|  |  |  |  | "use client"; | 
					
						
							|  |  |  |  | // azure and openai, using same models. so using same LLMApi.
 | 
					
						
							|  |  |  |  | import { | 
					
						
							|  |  |  |  |   ApiPath, | 
					
						
							|  |  |  |  |   OPENAI_BASE_URL, | 
					
						
							|  |  |  |  |   DEFAULT_MODELS, | 
					
						
							|  |  |  |  |   OpenaiPath, | 
					
						
							|  |  |  |  |   Azure, | 
					
						
							|  |  |  |  |   REQUEST_TIMEOUT_MS, | 
					
						
							|  |  |  |  |   ServiceProvider, | 
					
						
							|  |  |  |  |   REQUEST_TIMEOUT_MS_FOR_THINKING, | 
					
						
							|  |  |  |  | } from "@/app/constant"; | 
					
						
							|  |  |  |  | import { | 
					
						
							|  |  |  |  |   ChatMessageTool, | 
					
						
							|  |  |  |  |   useAccessStore, | 
					
						
							|  |  |  |  |   useAppConfig, | 
					
						
							|  |  |  |  |   useChatStore, | 
					
						
							|  |  |  |  |   usePluginStore, | 
					
						
							|  |  |  |  | } from "@/app/store"; | 
					
						
							|  |  |  |  | import { collectModelsWithDefaultModel } from "@/app/utils/model"; | 
					
						
							|  |  |  |  | import { | 
					
						
							|  |  |  |  |   preProcessImageContent, | 
					
						
							|  |  |  |  |   uploadImage, | 
					
						
							|  |  |  |  |   base64Image2Blob, | 
					
						
							|  |  |  |  |   stream, | 
					
						
							|  |  |  |  | } from "@/app/utils/chat"; | 
					
						
							|  |  |  |  | import { cloudflareAIGatewayUrl } from "@/app/utils/cloudflare"; | 
					
						
							|  |  |  |  | import { ModelSize, DalleQuality, DalleStyle } from "@/app/typing"; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | import { | 
					
						
							|  |  |  |  |   ChatOptions, | 
					
						
							|  |  |  |  |   getHeaders, | 
					
						
							|  |  |  |  |   LLMApi, | 
					
						
							|  |  |  |  |   LLMModel, | 
					
						
							|  |  |  |  |   LLMUsage, | 
					
						
							|  |  |  |  |   MultimodalContent, | 
					
						
							|  |  |  |  |   SpeechOptions, | 
					
						
							|  |  |  |  | } from "../api"; | 
					
						
							|  |  |  |  | import Locale from "../../locales"; | 
					
						
							|  |  |  |  | import { getClientConfig } from "@/app/config/client"; | 
					
						
							|  |  |  |  | import { | 
					
						
							|  |  |  |  |   getMessageTextContent, | 
					
						
							|  |  |  |  |   isVisionModel, | 
					
						
							|  |  |  |  |   isDalle3 as _isDalle3, | 
					
						
							|  |  |  |  | } from "@/app/utils"; | 
					
						
							|  |  |  |  | import { fetch } from "@/app/utils/stream"; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | export interface OpenAIListModelResponse { | 
					
						
							|  |  |  |  |   object: string; | 
					
						
							|  |  |  |  |   data: Array<{ | 
					
						
							|  |  |  |  |     id: string; | 
					
						
							|  |  |  |  |     object: string; | 
					
						
							|  |  |  |  |     root: string; | 
					
						
							|  |  |  |  |   }>; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | export interface RequestPayload { | 
					
						
							|  |  |  |  |   messages: { | 
					
						
							|  |  |  |  |     role: "system" | "user" | "assistant"; | 
					
						
							|  |  |  |  |     content: string | MultimodalContent[]; | 
					
						
							|  |  |  |  |   }[]; | 
					
						
							|  |  |  |  |   stream?: boolean; | 
					
						
							|  |  |  |  |   model: string; | 
					
						
							|  |  |  |  |   temperature: number; | 
					
						
							|  |  |  |  |   presence_penalty: number; | 
					
						
							|  |  |  |  |   frequency_penalty: number; | 
					
						
							|  |  |  |  |   top_p: number; | 
					
						
							|  |  |  |  |   max_tokens?: number; | 
					
						
							|  |  |  |  |   max_completion_tokens?: number; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | export interface DalleRequestPayload { | 
					
						
							|  |  |  |  |   model: string; | 
					
						
							|  |  |  |  |   prompt: string; | 
					
						
							|  |  |  |  |   response_format: "url" | "b64_json"; | 
					
						
							|  |  |  |  |   n: number; | 
					
						
							|  |  |  |  |   size: ModelSize; | 
					
						
							|  |  |  |  |   quality: DalleQuality; | 
					
						
							|  |  |  |  |   style: DalleStyle; | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  | export class ChatGPTApi implements LLMApi { | 
					
						
							|  |  |  |  |   private disableListModels = true; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   path(path: string): string { | 
					
						
							|  |  |  |  |     const accessStore = useAccessStore.getState(); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     let baseUrl = ""; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const isAzure = path.includes("deployments"); | 
					
						
							|  |  |  |  |     if (accessStore.useCustomConfig) { | 
					
						
							|  |  |  |  |       if (isAzure && !accessStore.isValidAzure()) { | 
					
						
							|  |  |  |  |         throw Error( | 
					
						
							|  |  |  |  |           "incomplete azure config, please check it in your settings page", | 
					
						
							|  |  |  |  |         ); | 
					
						
							|  |  |  |  |       } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |       baseUrl = isAzure ? accessStore.azureUrl : accessStore.openaiUrl; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (baseUrl.length === 0) { | 
					
						
							|  |  |  |  |       const isApp = !!getClientConfig()?.isApp; | 
					
						
							|  |  |  |  |       const apiPath = isAzure ? ApiPath.Azure : ApiPath.OpenAI; | 
					
						
							|  |  |  |  |       baseUrl = isApp ? OPENAI_BASE_URL : apiPath; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (baseUrl.endsWith("/")) { | 
					
						
							|  |  |  |  |       baseUrl = baseUrl.slice(0, baseUrl.length - 1); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     if ( | 
					
						
							|  |  |  |  |       !baseUrl.startsWith("http") && | 
					
						
							|  |  |  |  |       !isAzure && | 
					
						
							|  |  |  |  |       !baseUrl.startsWith(ApiPath.OpenAI) | 
					
						
							|  |  |  |  |     ) { | 
					
						
							|  |  |  |  |       baseUrl = "https://" + baseUrl; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     console.log("[Proxy Endpoint] ", baseUrl, path); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     // try rebuild url, when using cloudflare ai gateway in client
 | 
					
						
							|  |  |  |  |     return cloudflareAIGatewayUrl([baseUrl, path].join("/")); | 
					
						
							|  |  |  |  |   } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   async extractMessage(res: any) { | 
					
						
							|  |  |  |  |     if (res.error) { | 
					
						
							|  |  |  |  |       return "```\n" + JSON.stringify(res, null, 4) + "\n```"; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     // dalle3 model return url, using url create image message
 | 
					
						
							|  |  |  |  |     if (res.data) { | 
					
						
							|  |  |  |  |       let url = res.data?.at(0)?.url ?? ""; | 
					
						
							|  |  |  |  |       const b64_json = res.data?.at(0)?.b64_json ?? ""; | 
					
						
							|  |  |  |  |       if (!url && b64_json) { | 
					
						
							|  |  |  |  |         // uploadImage
 | 
					
						
							|  |  |  |  |         url = await uploadImage(base64Image2Blob(b64_json, "image/png")); | 
					
						
							|  |  |  |  |       } | 
					
						
							|  |  |  |  |       return [ | 
					
						
							|  |  |  |  |         { | 
					
						
							|  |  |  |  |           type: "image_url", | 
					
						
							|  |  |  |  |           image_url: { | 
					
						
							|  |  |  |  |             url, | 
					
						
							|  |  |  |  |           }, | 
					
						
							|  |  |  |  |         }, | 
					
						
							|  |  |  |  |       ]; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |     return res.choices?.at(0)?.message?.content ?? res; | 
					
						
							|  |  |  |  |   } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   async speech(options: SpeechOptions): Promise<ArrayBuffer> { | 
					
						
							|  |  |  |  |     const requestPayload = { | 
					
						
							|  |  |  |  |       model: options.model, | 
					
						
							|  |  |  |  |       input: options.input, | 
					
						
							|  |  |  |  |       voice: options.voice, | 
					
						
							|  |  |  |  |       response_format: options.response_format, | 
					
						
							|  |  |  |  |       speed: options.speed, | 
					
						
							|  |  |  |  |     }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     console.log("[Request] openai speech payload: ", requestPayload); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const controller = new AbortController(); | 
					
						
							|  |  |  |  |     options.onController?.(controller); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     try { | 
					
						
							|  |  |  |  |       const speechPath = this.path(OpenaiPath.SpeechPath); | 
					
						
							|  |  |  |  |       const speechPayload = { | 
					
						
							|  |  |  |  |         method: "POST", | 
					
						
							|  |  |  |  |         body: JSON.stringify(requestPayload), | 
					
						
							|  |  |  |  |         signal: controller.signal, | 
					
						
							|  |  |  |  |         headers: getHeaders(), | 
					
						
							|  |  |  |  |       }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |       // make a fetch request
 | 
					
						
							|  |  |  |  |       const requestTimeoutId = setTimeout( | 
					
						
							|  |  |  |  |         () => controller.abort(), | 
					
						
							|  |  |  |  |         REQUEST_TIMEOUT_MS, | 
					
						
							|  |  |  |  |       ); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |       const res = await fetch(speechPath, speechPayload); | 
					
						
							|  |  |  |  |       clearTimeout(requestTimeoutId); | 
					
						
							|  |  |  |  |       return await res.arrayBuffer(); | 
					
						
							|  |  |  |  |     } catch (e) { | 
					
						
							|  |  |  |  |       console.log("[Request] failed to make a speech request", e); | 
					
						
							|  |  |  |  |       throw e; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |   } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   async chat(options: ChatOptions) { | 
					
						
							|  |  |  |  |     const modelConfig = { | 
					
						
							|  |  |  |  |       ...useAppConfig.getState().modelConfig, | 
					
						
							|  |  |  |  |       ...useChatStore.getState().currentSession().mask.modelConfig, | 
					
						
							|  |  |  |  |       ...{ | 
					
						
							|  |  |  |  |         model: options.config.model, | 
					
						
							|  |  |  |  |         providerName: options.config.providerName, | 
					
						
							|  |  |  |  |       }, | 
					
						
							|  |  |  |  |     }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     let requestPayload: RequestPayload | DalleRequestPayload; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const isDalle3 = _isDalle3(options.config.model); | 
					
						
							|  |  |  |  |     const isO1OrO3 = | 
					
						
							|  |  |  |  |       options.config.model.startsWith("o1") || | 
					
						
							|  |  |  |  |       options.config.model.startsWith("o3"); | 
					
						
							|  |  |  |  |     if (isDalle3) { | 
					
						
							|  |  |  |  |       const prompt = getMessageTextContent( | 
					
						
							|  |  |  |  |         options.messages.slice(-1)?.pop() as any, | 
					
						
							|  |  |  |  |       ); | 
					
						
							|  |  |  |  |       requestPayload = { | 
					
						
							|  |  |  |  |         model: options.config.model, | 
					
						
							|  |  |  |  |         prompt, | 
					
						
							|  |  |  |  |         // URLs are only valid for 60 minutes after the image has been generated.
 | 
					
						
							|  |  |  |  |         response_format: "b64_json", // using b64_json, and save image in CacheStorage
 | 
					
						
							|  |  |  |  |         n: 1, | 
					
						
							|  |  |  |  |         size: options.config?.size ?? "1024x1024", | 
					
						
							|  |  |  |  |         quality: options.config?.quality ?? "standard", | 
					
						
							|  |  |  |  |         style: options.config?.style ?? "vivid", | 
					
						
							|  |  |  |  |       }; | 
					
						
							|  |  |  |  |     } else { | 
					
						
							|  |  |  |  |       const visionModel = isVisionModel(options.config.model); | 
					
						
							|  |  |  |  |       const messages: ChatOptions["messages"] = []; | 
					
						
							|  |  |  |  |       for (const v of options.messages) { | 
					
						
							|  |  |  |  |         const content = visionModel | 
					
						
							|  |  |  |  |           ? await preProcessImageContent(v.content) | 
					
						
							|  |  |  |  |           : getMessageTextContent(v); | 
					
						
							|  |  |  |  |         if (!(isO1OrO3 && v.role === "system")) | 
					
						
							|  |  |  |  |           messages.push({ role: v.role, content }); | 
					
						
							|  |  |  |  |       } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |       // O1 not support image, tools (plugin in ChatGPTNextWeb) and system, stream, logprobs, temperature, top_p, n, presence_penalty, frequency_penalty yet.
 | 
					
						
							|  |  |  |  |       requestPayload = { | 
					
						
							|  |  |  |  |         messages, | 
					
						
							|  |  |  |  |         stream: options.config.stream, | 
					
						
							|  |  |  |  |         model: modelConfig.model, | 
					
						
							|  |  |  |  |         temperature: !isO1OrO3 ? modelConfig.temperature : 1, | 
					
						
							|  |  |  |  |         presence_penalty: !isO1OrO3 ? modelConfig.presence_penalty : 0, | 
					
						
							|  |  |  |  |         frequency_penalty: !isO1OrO3 ? modelConfig.frequency_penalty : 0, | 
					
						
							|  |  |  |  |         top_p: !isO1OrO3 ? modelConfig.top_p : 1, | 
					
						
							|  |  |  |  |         // max_tokens: Math.max(modelConfig.max_tokens, 1024),
 | 
					
						
							|  |  |  |  |         // Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
 | 
					
						
							|  |  |  |  |       }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |       // O1 使用 max_completion_tokens 控制token数 (https://platform.openai.com/docs/guides/reasoning#controlling-costs)
 | 
					
						
							|  |  |  |  |       if (isO1OrO3) { | 
					
						
							|  |  |  |  |         requestPayload["max_completion_tokens"] = modelConfig.max_tokens; | 
					
						
							|  |  |  |  |       } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |       // add max_tokens to vision model
 | 
					
						
							|  |  |  |  |       if (visionModel) { | 
					
						
							|  |  |  |  |         requestPayload["max_tokens"] = Math.max(modelConfig.max_tokens, 4000); | 
					
						
							|  |  |  |  |       } | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     console.log("[Request] openai payload: ", requestPayload); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const shouldStream = !isDalle3 && !!options.config.stream; | 
					
						
							|  |  |  |  |     const controller = new AbortController(); | 
					
						
							|  |  |  |  |     options.onController?.(controller); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     try { | 
					
						
							|  |  |  |  |       let chatPath = ""; | 
					
						
							|  |  |  |  |       if (modelConfig.providerName === ServiceProvider.Azure) { | 
					
						
							|  |  |  |  |         // find model, and get displayName as deployName
 | 
					
						
							|  |  |  |  |         const { models: configModels, customModels: configCustomModels } = | 
					
						
							|  |  |  |  |           useAppConfig.getState(); | 
					
						
							|  |  |  |  |         const { | 
					
						
							|  |  |  |  |           defaultModel, | 
					
						
							|  |  |  |  |           customModels: accessCustomModels, | 
					
						
							|  |  |  |  |           useCustomConfig, | 
					
						
							|  |  |  |  |         } = useAccessStore.getState(); | 
					
						
							|  |  |  |  |         const models = collectModelsWithDefaultModel( | 
					
						
							|  |  |  |  |           configModels, | 
					
						
							|  |  |  |  |           [configCustomModels, accessCustomModels].join(","), | 
					
						
							|  |  |  |  |           defaultModel, | 
					
						
							|  |  |  |  |         ); | 
					
						
							|  |  |  |  |         const model = models.find( | 
					
						
							|  |  |  |  |           (model) => | 
					
						
							|  |  |  |  |             model.name === modelConfig.model && | 
					
						
							|  |  |  |  |             model?.provider?.providerName === ServiceProvider.Azure, | 
					
						
							|  |  |  |  |         ); | 
					
						
							|  |  |  |  |         chatPath = this.path( | 
					
						
							|  |  |  |  |           (isDalle3 ? Azure.ImagePath : Azure.ChatPath)( | 
					
						
							|  |  |  |  |             (model?.displayName ?? model?.name) as string, | 
					
						
							|  |  |  |  |             useCustomConfig ? useAccessStore.getState().azureApiVersion : "", | 
					
						
							|  |  |  |  |           ), | 
					
						
							|  |  |  |  |         ); | 
					
						
							|  |  |  |  |       } else { | 
					
						
							|  |  |  |  |         chatPath = this.path( | 
					
						
							|  |  |  |  |           isDalle3 ? OpenaiPath.ImagePath : OpenaiPath.ChatPath, | 
					
						
							|  |  |  |  |         ); | 
					
						
							|  |  |  |  |       } | 
					
						
							|  |  |  |  |       if (shouldStream) { | 
					
						
							|  |  |  |  |         let index = -1; | 
					
						
							|  |  |  |  |         const [tools, funcs] = usePluginStore | 
					
						
							|  |  |  |  |           .getState() | 
					
						
							|  |  |  |  |           .getAsTools( | 
					
						
							|  |  |  |  |             useChatStore.getState().currentSession().mask?.plugin || [], | 
					
						
							|  |  |  |  |           ); | 
					
						
							|  |  |  |  |         // console.log("getAsTools", tools, funcs);
 | 
					
						
							|  |  |  |  |         stream( | 
					
						
							|  |  |  |  |           chatPath, | 
					
						
							|  |  |  |  |           requestPayload, | 
					
						
							|  |  |  |  |           getHeaders(), | 
					
						
							|  |  |  |  |           tools as any, | 
					
						
							|  |  |  |  |           funcs, | 
					
						
							|  |  |  |  |           controller, | 
					
						
							|  |  |  |  |           // parseSSE
 | 
					
						
							|  |  |  |  |           (text: string, runTools: ChatMessageTool[]) => { | 
					
						
							|  |  |  |  |             // console.log("parseSSE", text, runTools);
 | 
					
						
							|  |  |  |  |             const json = JSON.parse(text); | 
					
						
							|  |  |  |  |             const choices = json.choices as Array<{ | 
					
						
							|  |  |  |  |               delta: { | 
					
						
							|  |  |  |  |                 content: string; | 
					
						
							|  |  |  |  |                 tool_calls: ChatMessageTool[]; | 
					
						
							|  |  |  |  |               }; | 
					
						
							|  |  |  |  |             }>; | 
					
						
							|  |  |  |  |             const tool_calls = choices[0]?.delta?.tool_calls; | 
					
						
							|  |  |  |  |             if (tool_calls?.length > 0) { | 
					
						
							|  |  |  |  |               const id = tool_calls[0]?.id; | 
					
						
							|  |  |  |  |               const args = tool_calls[0]?.function?.arguments; | 
					
						
							|  |  |  |  |               if (id) { | 
					
						
							|  |  |  |  |                 index += 1; | 
					
						
							|  |  |  |  |                 runTools.push({ | 
					
						
							|  |  |  |  |                   id, | 
					
						
							|  |  |  |  |                   type: tool_calls[0]?.type, | 
					
						
							|  |  |  |  |                   function: { | 
					
						
							|  |  |  |  |                     name: tool_calls[0]?.function?.name as string, | 
					
						
							|  |  |  |  |                     arguments: args, | 
					
						
							|  |  |  |  |                   }, | 
					
						
							|  |  |  |  |                 }); | 
					
						
							|  |  |  |  |               } else { | 
					
						
							|  |  |  |  |                 // @ts-ignore
 | 
					
						
							|  |  |  |  |                 runTools[index]["function"]["arguments"] += args; | 
					
						
							|  |  |  |  |               } | 
					
						
							|  |  |  |  |             } | 
					
						
							|  |  |  |  |             return choices[0]?.delta?.content; | 
					
						
							|  |  |  |  |           }, | 
					
						
							|  |  |  |  |           // processToolMessage, include tool_calls message and tool call results
 | 
					
						
							|  |  |  |  |           ( | 
					
						
							|  |  |  |  |             requestPayload: RequestPayload, | 
					
						
							|  |  |  |  |             toolCallMessage: any, | 
					
						
							|  |  |  |  |             toolCallResult: any[], | 
					
						
							|  |  |  |  |           ) => { | 
					
						
							|  |  |  |  |             // reset index value
 | 
					
						
							|  |  |  |  |             index = -1; | 
					
						
							|  |  |  |  |             // @ts-ignore
 | 
					
						
							|  |  |  |  |             requestPayload?.messages?.splice( | 
					
						
							|  |  |  |  |               // @ts-ignore
 | 
					
						
							|  |  |  |  |               requestPayload?.messages?.length, | 
					
						
							|  |  |  |  |               0, | 
					
						
							|  |  |  |  |               toolCallMessage, | 
					
						
							|  |  |  |  |               ...toolCallResult, | 
					
						
							|  |  |  |  |             ); | 
					
						
							|  |  |  |  |           }, | 
					
						
							|  |  |  |  |           options, | 
					
						
							|  |  |  |  |         ); | 
					
						
							|  |  |  |  |       } else { | 
					
						
							|  |  |  |  |         const chatPayload = { | 
					
						
							|  |  |  |  |           method: "POST", | 
					
						
							|  |  |  |  |           body: JSON.stringify(requestPayload), | 
					
						
							|  |  |  |  |           signal: controller.signal, | 
					
						
							|  |  |  |  |           headers: getHeaders(), | 
					
						
							|  |  |  |  |         }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         // make a fetch request
 | 
					
						
							|  |  |  |  |         const requestTimeoutId = setTimeout( | 
					
						
							|  |  |  |  |           () => controller.abort(), | 
					
						
							|  |  |  |  |           isDalle3 || isO1OrO3 | 
					
						
							|  |  |  |  |             ? REQUEST_TIMEOUT_MS_FOR_THINKING | 
					
						
							|  |  |  |  |             : REQUEST_TIMEOUT_MS, // dalle3 using b64_json is slow.
 | 
					
						
							|  |  |  |  |         ); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         const res = await fetch(chatPath, chatPayload); | 
					
						
							|  |  |  |  |         clearTimeout(requestTimeoutId); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |         const resJson = await res.json(); | 
					
						
							|  |  |  |  |         const message = await this.extractMessage(resJson); | 
					
						
							|  |  |  |  |         options.onFinish(message, res); | 
					
						
							|  |  |  |  |       } | 
					
						
							|  |  |  |  |     } catch (e) { | 
					
						
							|  |  |  |  |       console.log("[Request] failed to make a chat request", e); | 
					
						
							|  |  |  |  |       options.onError?.(e as Error); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  |   } | 
					
						
							|  |  |  |  |   async usage() { | 
					
						
							|  |  |  |  |     const formatDate = (d: Date) => | 
					
						
							|  |  |  |  |       `${d.getFullYear()}-${(d.getMonth() + 1).toString().padStart(2, "0")}-${d | 
					
						
							|  |  |  |  |         .getDate() | 
					
						
							|  |  |  |  |         .toString() | 
					
						
							|  |  |  |  |         .padStart(2, "0")}`;
 | 
					
						
							|  |  |  |  |     const ONE_DAY = 1 * 24 * 60 * 60 * 1000; | 
					
						
							|  |  |  |  |     const now = new Date(); | 
					
						
							|  |  |  |  |     const startOfMonth = new Date(now.getFullYear(), now.getMonth(), 1); | 
					
						
							|  |  |  |  |     const startDate = formatDate(startOfMonth); | 
					
						
							|  |  |  |  |     const endDate = formatDate(new Date(Date.now() + ONE_DAY)); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const [used, subs] = await Promise.all([ | 
					
						
							|  |  |  |  |       fetch( | 
					
						
							|  |  |  |  |         this.path( | 
					
						
							|  |  |  |  |           `${OpenaiPath.UsagePath}?start_date=${startDate}&end_date=${endDate}`, | 
					
						
							|  |  |  |  |         ), | 
					
						
							|  |  |  |  |         { | 
					
						
							|  |  |  |  |           method: "GET", | 
					
						
							|  |  |  |  |           headers: getHeaders(), | 
					
						
							|  |  |  |  |         }, | 
					
						
							|  |  |  |  |       ), | 
					
						
							|  |  |  |  |       fetch(this.path(OpenaiPath.SubsPath), { | 
					
						
							|  |  |  |  |         method: "GET", | 
					
						
							|  |  |  |  |         headers: getHeaders(), | 
					
						
							|  |  |  |  |       }), | 
					
						
							|  |  |  |  |     ]); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (used.status === 401) { | 
					
						
							|  |  |  |  |       throw new Error(Locale.Error.Unauthorized); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (!used.ok || !subs.ok) { | 
					
						
							|  |  |  |  |       throw new Error("Failed to query usage from openai"); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const response = (await used.json()) as { | 
					
						
							|  |  |  |  |       total_usage?: number; | 
					
						
							|  |  |  |  |       error?: { | 
					
						
							|  |  |  |  |         type: string; | 
					
						
							|  |  |  |  |         message: string; | 
					
						
							|  |  |  |  |       }; | 
					
						
							|  |  |  |  |     }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const total = (await subs.json()) as { | 
					
						
							|  |  |  |  |       hard_limit_usd?: number; | 
					
						
							|  |  |  |  |     }; | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (response.error && response.error.type) { | 
					
						
							|  |  |  |  |       throw Error(response.error.message); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (response.total_usage) { | 
					
						
							|  |  |  |  |       response.total_usage = Math.round(response.total_usage) / 100; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (total.hard_limit_usd) { | 
					
						
							|  |  |  |  |       total.hard_limit_usd = Math.round(total.hard_limit_usd * 100) / 100; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     return { | 
					
						
							|  |  |  |  |       used: response.total_usage, | 
					
						
							|  |  |  |  |       total: total.hard_limit_usd, | 
					
						
							|  |  |  |  |     } as LLMUsage; | 
					
						
							|  |  |  |  |   } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |   async models(): Promise<LLMModel[]> { | 
					
						
							|  |  |  |  |     if (this.disableListModels) { | 
					
						
							|  |  |  |  |       return DEFAULT_MODELS.slice(); | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const res = await fetch(this.path(OpenaiPath.ListModelPath), { | 
					
						
							|  |  |  |  |       method: "GET", | 
					
						
							|  |  |  |  |       headers: { | 
					
						
							|  |  |  |  |         ...getHeaders(), | 
					
						
							|  |  |  |  |       }, | 
					
						
							|  |  |  |  |     }); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     const resJson = (await res.json()) as OpenAIListModelResponse; | 
					
						
							|  |  |  |  |     const chatModels = resJson.data?.filter( | 
					
						
							|  |  |  |  |       (m) => m.id.startsWith("gpt-") || m.id.startsWith("chatgpt-"), | 
					
						
							|  |  |  |  |     ); | 
					
						
							|  |  |  |  |     console.log("[Models]", chatModels); | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     if (!chatModels) { | 
					
						
							|  |  |  |  |       return []; | 
					
						
							|  |  |  |  |     } | 
					
						
							|  |  |  |  | 
 | 
					
						
							|  |  |  |  |     //由于目前 OpenAI 的 disableListModels 默认为 true,所以当前实际不会运行到这场
 | 
					
						
							|  |  |  |  |     let seq = 1000; //同 Constant.ts 中的排序保持一致
 | 
					
						
							|  |  |  |  |     return chatModels.map((m) => ({ | 
					
						
							|  |  |  |  |       name: m.id, | 
					
						
							|  |  |  |  |       available: true, | 
					
						
							|  |  |  |  |       sorted: seq++, | 
					
						
							|  |  |  |  |       provider: { | 
					
						
							|  |  |  |  |         id: "openai", | 
					
						
							|  |  |  |  |         providerName: "OpenAI", | 
					
						
							|  |  |  |  |         providerType: "openai", | 
					
						
							|  |  |  |  |         sorted: 1, | 
					
						
							|  |  |  |  |       }, | 
					
						
							|  |  |  |  |     })); | 
					
						
							|  |  |  |  |   } | 
					
						
							|  |  |  |  | } | 
					
						
							|  |  |  |  | export { OpenaiPath }; |