You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			244 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			TypeScript
		
	
			
		
		
	
	
			244 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			TypeScript
		
	
| "use client";
 | |
| // azure and openai, using same models. so using same LLMApi.
 | |
| import {
 | |
|   ApiPath,
 | |
|   SILICONFLOW_BASE_URL,
 | |
|   SiliconFlow,
 | |
|   REQUEST_TIMEOUT_MS_FOR_THINKING,
 | |
| } from "@/app/constant";
 | |
| import {
 | |
|   useAccessStore,
 | |
|   useAppConfig,
 | |
|   useChatStore,
 | |
|   ChatMessageTool,
 | |
|   usePluginStore,
 | |
| } from "@/app/store";
 | |
| import { streamWithThink } from "@/app/utils/chat";
 | |
| import {
 | |
|   ChatOptions,
 | |
|   getHeaders,
 | |
|   LLMApi,
 | |
|   LLMModel,
 | |
|   SpeechOptions,
 | |
| } from "../api";
 | |
| import { getClientConfig } from "@/app/config/client";
 | |
| import {
 | |
|   getMessageTextContent,
 | |
|   getMessageTextContentWithoutThinking,
 | |
| } from "@/app/utils";
 | |
| import { RequestPayload } from "./openai";
 | |
| import { fetch } from "@/app/utils/stream";
 | |
| 
 | |
| export class SiliconflowApi implements LLMApi {
 | |
|   private disableListModels = true;
 | |
| 
 | |
|   path(path: string): string {
 | |
|     const accessStore = useAccessStore.getState();
 | |
| 
 | |
|     let baseUrl = "";
 | |
| 
 | |
|     if (accessStore.useCustomConfig) {
 | |
|       baseUrl = accessStore.siliconflowUrl;
 | |
|     }
 | |
| 
 | |
|     if (baseUrl.length === 0) {
 | |
|       const isApp = !!getClientConfig()?.isApp;
 | |
|       const apiPath = ApiPath.SiliconFlow;
 | |
|       baseUrl = isApp ? SILICONFLOW_BASE_URL : apiPath;
 | |
|     }
 | |
| 
 | |
|     if (baseUrl.endsWith("/")) {
 | |
|       baseUrl = baseUrl.slice(0, baseUrl.length - 1);
 | |
|     }
 | |
|     if (
 | |
|       !baseUrl.startsWith("http") &&
 | |
|       !baseUrl.startsWith(ApiPath.SiliconFlow)
 | |
|     ) {
 | |
|       baseUrl = "https://" + baseUrl;
 | |
|     }
 | |
| 
 | |
|     console.log("[Proxy Endpoint] ", baseUrl, path);
 | |
| 
 | |
|     return [baseUrl, path].join("/");
 | |
|   }
 | |
| 
 | |
|   extractMessage(res: any) {
 | |
|     return res.choices?.at(0)?.message?.content ?? "";
 | |
|   }
 | |
| 
 | |
|   speech(options: SpeechOptions): Promise<ArrayBuffer> {
 | |
|     throw new Error("Method not implemented.");
 | |
|   }
 | |
| 
 | |
|   async chat(options: ChatOptions) {
 | |
|     const messages: ChatOptions["messages"] = [];
 | |
|     for (const v of options.messages) {
 | |
|       if (v.role === "assistant") {
 | |
|         const content = getMessageTextContentWithoutThinking(v);
 | |
|         messages.push({ role: v.role, content });
 | |
|       } else {
 | |
|         const content = getMessageTextContent(v);
 | |
|         messages.push({ role: v.role, content });
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     const modelConfig = {
 | |
|       ...useAppConfig.getState().modelConfig,
 | |
|       ...useChatStore.getState().currentSession().mask.modelConfig,
 | |
|       ...{
 | |
|         model: options.config.model,
 | |
|         providerName: options.config.providerName,
 | |
|       },
 | |
|     };
 | |
| 
 | |
|     const requestPayload: RequestPayload = {
 | |
|       messages,
 | |
|       stream: options.config.stream,
 | |
|       model: modelConfig.model,
 | |
|       temperature: modelConfig.temperature,
 | |
|       presence_penalty: modelConfig.presence_penalty,
 | |
|       frequency_penalty: modelConfig.frequency_penalty,
 | |
|       top_p: modelConfig.top_p,
 | |
|       // max_tokens: Math.max(modelConfig.max_tokens, 1024),
 | |
|       // Please do not ask me why not send max_tokens, no reason, this param is just shit, I dont want to explain anymore.
 | |
|     };
 | |
| 
 | |
|     console.log("[Request] openai payload: ", requestPayload);
 | |
| 
 | |
|     const shouldStream = !!options.config.stream;
 | |
|     const controller = new AbortController();
 | |
|     options.onController?.(controller);
 | |
| 
 | |
|     try {
 | |
|       const chatPath = this.path(SiliconFlow.ChatPath);
 | |
|       const chatPayload = {
 | |
|         method: "POST",
 | |
|         body: JSON.stringify(requestPayload),
 | |
|         signal: controller.signal,
 | |
|         headers: getHeaders(),
 | |
|       };
 | |
| 
 | |
|       // console.log(chatPayload);
 | |
| 
 | |
|       // Use extended timeout for thinking models as they typically require more processing time
 | |
|       const requestTimeoutId = setTimeout(
 | |
|         () => controller.abort(),
 | |
|         REQUEST_TIMEOUT_MS_FOR_THINKING,
 | |
|       );
 | |
| 
 | |
|       if (shouldStream) {
 | |
|         const [tools, funcs] = usePluginStore
 | |
|           .getState()
 | |
|           .getAsTools(
 | |
|             useChatStore.getState().currentSession().mask?.plugin || [],
 | |
|           );
 | |
|         return streamWithThink(
 | |
|           chatPath,
 | |
|           requestPayload,
 | |
|           getHeaders(),
 | |
|           tools as any,
 | |
|           funcs,
 | |
|           controller,
 | |
|           // parseSSE
 | |
|           (text: string, runTools: ChatMessageTool[]) => {
 | |
|             // console.log("parseSSE", text, runTools);
 | |
|             const json = JSON.parse(text);
 | |
|             const choices = json.choices as Array<{
 | |
|               delta: {
 | |
|                 content: string | null;
 | |
|                 tool_calls: ChatMessageTool[];
 | |
|                 reasoning_content: string | null;
 | |
|               };
 | |
|             }>;
 | |
|             const tool_calls = choices[0]?.delta?.tool_calls;
 | |
|             if (tool_calls?.length > 0) {
 | |
|               const index = tool_calls[0]?.index;
 | |
|               const id = tool_calls[0]?.id;
 | |
|               const args = tool_calls[0]?.function?.arguments;
 | |
|               if (id) {
 | |
|                 runTools.push({
 | |
|                   id,
 | |
|                   type: tool_calls[0]?.type,
 | |
|                   function: {
 | |
|                     name: tool_calls[0]?.function?.name as string,
 | |
|                     arguments: args,
 | |
|                   },
 | |
|                 });
 | |
|               } else {
 | |
|                 // @ts-ignore
 | |
|                 runTools[index]["function"]["arguments"] += args;
 | |
|               }
 | |
|             }
 | |
|             const reasoning = choices[0]?.delta?.reasoning_content;
 | |
|             const content = choices[0]?.delta?.content;
 | |
| 
 | |
|             // Skip if both content and reasoning_content are empty or null
 | |
|             if (
 | |
|               (!reasoning || reasoning.length === 0) &&
 | |
|               (!content || content.length === 0)
 | |
|             ) {
 | |
|               return {
 | |
|                 isThinking: false,
 | |
|                 content: "",
 | |
|               };
 | |
|             }
 | |
| 
 | |
|             if (reasoning && reasoning.length > 0) {
 | |
|               return {
 | |
|                 isThinking: true,
 | |
|                 content: reasoning,
 | |
|               };
 | |
|             } else if (content && content.length > 0) {
 | |
|               return {
 | |
|                 isThinking: false,
 | |
|                 content: content,
 | |
|               };
 | |
|             }
 | |
| 
 | |
|             return {
 | |
|               isThinking: false,
 | |
|               content: "",
 | |
|             };
 | |
|           },
 | |
|           // processToolMessage, include tool_calls message and tool call results
 | |
|           (
 | |
|             requestPayload: RequestPayload,
 | |
|             toolCallMessage: any,
 | |
|             toolCallResult: any[],
 | |
|           ) => {
 | |
|             // @ts-ignore
 | |
|             requestPayload?.messages?.splice(
 | |
|               // @ts-ignore
 | |
|               requestPayload?.messages?.length,
 | |
|               0,
 | |
|               toolCallMessage,
 | |
|               ...toolCallResult,
 | |
|             );
 | |
|           },
 | |
|           options,
 | |
|         );
 | |
|       } else {
 | |
|         const res = await fetch(chatPath, chatPayload);
 | |
|         clearTimeout(requestTimeoutId);
 | |
| 
 | |
|         const resJson = await res.json();
 | |
|         const message = this.extractMessage(resJson);
 | |
|         options.onFinish(message, res);
 | |
|       }
 | |
|     } catch (e) {
 | |
|       console.log("[Request] failed to make a chat request", e);
 | |
|       options.onError?.(e as Error);
 | |
|     }
 | |
|   }
 | |
|   async usage() {
 | |
|     return {
 | |
|       used: 0,
 | |
|       total: 0,
 | |
|     };
 | |
|   }
 | |
| 
 | |
|   async models(): Promise<LLMModel[]> {
 | |
|     return [];
 | |
|   }
 | |
| }
 |