
 By Seaside Studios
 For technical support, feedback and requests write to:

 seasidegamestudios@gmail.com
 Twitter of the creator: https://twitter.com/GerardBelenguer

mailto:seasidegamestudios@gmail.com
https://twitter.com/GerardBelenguer

 Index
 Overview 2

 First Steps (Must Read) 3

 Asset Component Features 7

 Shader Structure and Usage 8

 Advanced Configuration and Key Rendering Concepts 12

 Particle System Helper Component 15

 Asset Window 19

 Textures Setup 23

 Saving Prefabs 24

 Screen Distortion and Creating Distortion Maps 24

 Custom Vertex Streams and Custom Data Auto Setup 25

 How to Animate Materials 29

 Scripting 30

 Visual Effect Graph (Vfx Graph) 31

 How to Enable/Disable Effects at Runtime 31

 Random Seed 32

 Render Material To Image 33

 Premade Textures, Meshes and Materials 34

 Helper Scripts and Other Utilities 34

 Effects and Properties Breakdown 36

 Custom Gradient Property Drawer 47

 Running out of Shader Keywords 47

 Credits 48

 1

 Overview
 First of all thanks for downloading this asset! The asset was created with the goal of
 providing the best workflow for VFX artists. Both experienced and beginners. The asset
 offloads most of the technical knowledge needed to create VFX and shaders while
 providing powerful tools, custom editors, learning resources, extremely flexible shaders
 and more.

 Everything was designed in such a way that experienced VFX artists will have
 everything they need and want while speeding up their workflow. And beginner artists
 will be provided with learning materials, examples, a huge asset library and much more!
 I really believe this is the best way to create VFX available in the asset store and it will
 only keep improving over time.

 The asset has a ton of features, resources and examples but using the main features is
 extremely easy and intuitive. Here’s a link to the youtube Tutorial playlist that explains
 how to use this asset in case you are a more visual learner, almost everything written in
 this document is explained there:
 https://youtube.com/playlist?list=PLKS0HUbkxp-kigE_Km7CGd2qbfEaoxDLb

 Once you’ve read this document or watched the playlist and you are familiar with the
 asset you can take a look at this video VFX course:
 https://youtube.com/playlist?list=PLKS0HUbkxp-khlRjadbOvOnNUynTZ1pwv
 (The course is still in development and more episodes will be added, if you have any
 idea or there’s something you want to learn, please let me know and I’ll probably make
 a video about it and even add it as a prefab to the asset :D)

 I’m always open for questions, feedback and suggestions. The best way to contact me
 is by email. Please don’t write questions in the Unity Forums, Youtube videos, Twitter or
 wherever else since I will probably miss them. I always reply much faster (in 24h or
 less) by email.
 When reaching out please attach your invoice number too and make sure you have
 read this document or watched the playlist linked above. The email address is:
 seasidegamestudios@gmail.com

 If you like the asset please make sure to drop a review on the Asset Store page. It
 helps out a ton:
 https://assetstore.unity.com/packages/vfx/all-in-1-vfx-toolkit-206665

 2

https://youtube.com/playlist?list=PLKS0HUbkxp-kigE_Km7CGd2qbfEaoxDLb
https://youtube.com/playlist?list=PLKS0HUbkxp-khlRjadbOvOnNUynTZ1pwv
mailto:seasidegamestudios@gmail.com

 First Steps (Must Read)
 Before going over the very basics about the asset let’s take a look at the install process
 for the different Render Pipelines.

 Built-In Pipeline:
 No setup is needed to use the asset in this Pipeline, everything is ready to go after
 importing the asset. But in order to get everything looking like in the store images,
 WebGL demo and trailer you’ll need to add post processing Bloom and change a couple
 project settings, here’s how:
 1. Install Post Processing package from the Package Manager
 2. In Project Settings, Graphics Settings enable HDR in all checkboxes

 At this point if you open the Demo scene it will look just like in the Trailer, but if you want
 to replicate the same setup in another scene you can follow these steps:
 1. Make sure you allow HDR in you camera
 2. Add Post Process Layer and Volume component
 3. Add the included AllIn1VfxPp Profile to the Volume component
 3. Properly configure them make making it Global and setting the Layer to the same
 Layer of the Camera you are using
 You can also watch a video about it here:
 https://youtu.be/_zrsScNWXoU

 URP Pipeline:
 To use the asset normally you just need to follow steps 1 and 2. The rest of the steps
 are optional, since they are only needed to get the Demo to look like in the store
 images, WebGL demo and trailer. These are the steps:
 1. Make sure that URP is properly installed on the project by either creating a URP
 project in Unity Hub or by going into the Package Manager, installing Universal RP,
 creating a Pipeline Asset and finally assigning it to the Graphics Settings tabs
 2. Import the “UrpPackage” Unity Package included in the asset root folder
 3. Set Color Space to Gamma in Player Settings, Other Settings, Color Space
 4. Select the Pipeline Asset and make sure that both Depth Texture (used by Soft
 Particles and Intersection Glow effects) and Opaque Texture (used by Screen Distortion
 effect) are enabled:

 3

https://youtu.be/_zrsScNWXoU

 5. Convert Demo environment Materials to URP by going to Edit, Render Pipeline,
 Universal Render Pipeline, Upgrade Project Materials
 6. Convert all Demo Prefab Materials to URP by opening the asset Window (Window,
 AllIn1VfxToolkitWindow), selecting the Others Tab and pressing Auto Setup Shaders for
 Materials in selected folder (by default the selected folder is the folder containing all
 prefab materials):

 7. At this point you can delete the Built-In shaders (AllIn1VfxBuiltIn and
 AllIn1VfxGrabPass) to avoid error messages down the line:

 8. At this point you can open the DemoUrp Scene and everything will look like in the
 promotion material. In case it doesn’t look exactly the same it means that you are in a
 more recent URP version where the Post Processing Bloom implementation has been
 changed. You can play around with the Bloom values in the Camera gameobject, inside

 4

 the Volumes Component.
 You can also watch this video:
 https://youtu.be/SjdlMLoNOSw (URP Renderer Setup)

 HDRP Pipeline :
 The asset works just as well in this pipeline as in the other 2 (it has complete feature
 parity and also has amazing performance), but the Demo scene and demo prefabs
 weren’t designed to look good in this pipeline. This means that no matter what we do we
 won’t be able to get the exact results of the store images, WebGL demo and trailer
 without modifying the properties of each material if the Demo.
 Effects created for HDRP should be created inside HDRP and targeting HDRP. If you do
 so you’ll get amazing top notch results. But the demo, unfortunately doesn’t include any
 HDRP specific effect since the effects were created in the Built-In also having URP in
 mind. This means that the demo will look pretty bad and dull in comparison to what’s
 shown in the promotion materials. Knowing this. , these are the setup steps:
 1. Make sure that HDRP is properly installed on the project by either creating a HDRP
 project in Unity Hub or by going into the Package Manager, installing High Definition RP,
 creating a Pipeline Asset and finally assigning it to the Graphics Settings tabs
 2. Import the “HdrpPackage” Unity Package included in the asset root folder. Note that
 there are 2 of them “HdrpPackage(pre2020)” and “HdrpPackage(post2020)”. Choose
 the appropriate one according to the Unity Editor version you are using.

 With these 2 steps you can already start using the asset. But if you really want to get
 the Demo working, even knowing and understanding that it will look bad and dull you
 can can do so following these extra steps:
 1. Convert Demo environment Materials to UHDRP by going to Edit, Render Pipeline,
 Upgrade Project Materials to High Definition Materials
 2. Convert all Demo Prefab Materials to HDRP by opening the asset Window (Window,
 AllIn1VfxToolkitWindow), selecting the Others Tab and pressing Auto Setup Shaders for
 Materials in selected folder (by default the selected folder is the folder containing all
 prefab materials):

 5

https://youtu.be/SjdlMLoNOSw

 3. Change the Default Volume Profile Asset to AllIn1PostProcessingHDRP:

 4. At this point you can delete the Built-In shaders (AllIn1VfxBuiltIn and
 AllIn1VfxGrabPass) to avoid error messages down the line:

 You can also watch this video:
 https://youtu.be/I_JvyLNrjwY (HDRP Renderer Setup)

 The asset includes a component that will do all the setup for you. The component is
 called “AddAllIn1Vfx”:

 6

https://youtu.be/I_JvyLNrjwY

 When you add it, the component will swap the current material for a new instance of the
 AllIn1Vfx material of the current render pipeline you are using. The component also has
 some features that are overviewed in the next section.

 This will of course only work when the gameobject has a Renderer component such as
 a Mesh Renderer, Particle System, Sprite Renderer etc…

 At this point you’ll see that the custom Material Inspector of the asset is available below
 the components of the object, you’ll be able to start using the Material,
 enabling/disabling effects and experimenting with the visuals.

 Here you have a link to a video that gives an overview of the asset in case you prefer a
 visual explanation:
 https://youtu.be/X8tkrm_HjwU

 *If you want to import just the core functionality of the asset without any extra
 stuff just remove or avoid importing the Demo & Assets and the unity packages
 of URP or HDRP that you don’t need. It’s recommended to then go into the All In 1
 Vfx Window (see Asset Window section) and set valid Save Paths

 Asset Component Features
 Also explained in the overview video: https://youtu.be/X8tkrm_HjwU

 You can add it by pressing Add Component and searching for AddAllIn1Vfx:

 7

https://youtu.be/X8tkrm_HjwU
https://youtu.be/X8tkrm_HjwU

 Once added the component will look like this:

 The buttons do the following:
 ● Deactivate All Effects : It will deactivate all effects but won’t modify any

 properties. So if you activate an effect again you will obtain your previous visual
 results.

 ● New Clean Material : It will create a new instance of the AllIn1VfxShader material
 and assign it to the Renderer.

 ● Create New Material With Same Properties : It will create a new instance of the
 AllIn1VfxShader material with the same properties of the previous one. This is
 useful when you want to create a variant of the current material.

 ● Save Material to Folder : Creates a Material asset with the name of the current
 GameObject and by default saves it in the following path:
 “Assets/AllIn1VfxToolkit/MaterialSaves” but the path can be changed in the Asset
 Window. This can be used to assign the same Material to many different
 Renderers.

 ● Apply Material To All Children : Applies the material of the current selected
 object to all the objects under its hierarchy.

 ● Render Material To Image : Renders current Texture + Material to an image
 texture. You can read more about this in the Render Material To Image section.

 ● Add Particle System Helper : Adds the Particle System Helper component. This
 option is only available when a Particle System is present in the current
 Gameobject

 ● Remove Component: Removes the component without changing anything else

 8

 ● Remove Component and Material : Removes the component from the
 GameObject and sets the Sprite Material back to the Sprite/Default one.

 Shader Structure and Usage
 If you are more of a visual learner there’s also a video tutorial:
 https://youtu.be/aQ9L1ZE_rHI

 The shader is structured in 3 main blocks:

 1. Configuration : In this section you can decide all render settings of the material.

 Changing these settings will be important to get the exact result you are looking
 for. This is the most technical part of the shader and will require a bit of technical
 understanding to always select the right configuration for each case.

 Hopefully with the help of the presets at the very top you won’t need to change
 any of the Advanced Configuration settings (read next section for more details on
 those) in most cases. Here’s a description and use case of each preset:

 9

https://youtu.be/aQ9L1ZE_rHI

 a. Transparent : The default preset. Uses regular Alpha Blending and it’s
 great for transparent materials that use a texture with an alpha channel.

 b. Additive : Additive Alpha Blending, it adds the final result color of the
 Material to the frame. This means that black will be invisible. So this
 blending mode is good for textures with no alpha channel+black
 background and for bright effects. Additive blendings tend to look very
 bright when the background isn’t dark enough.
 Keep in mind that Alpha effects when Additive Configuration is toggled will
 affect the greyscale of the global result instead of the alpha. In a way the
 shader reads the black color as alpha 0. This allows the shader effects to
 work in the same way with all presets.

 c. Soft Add (use with caution) : Similar to the Additive preset but a bit softer
 and less bright. Here the black will also be invisible. So this blending mode
 is good for textures with no alpha channel+black background and that
 aren’t very bright effects. You may encounter problems when several
 bright or glowing materials are overlapping, this is caused by the blending
 configuration this preset uses. If this is a problem for you please use the
 Additive preset and lower the alpha to get a similar look.
 Keep in mind that Alpha effects when Additive Configuration is toggled will
 affect the greyscale of the global result instead of the alpha. In a way the
 shader reads the black color as alpha 0. This allows the shader effects to
 work in the same way with all presets.

 d. Blend Add / Premultiply : This preset is a combination between
 Transparent and Additive taking the best from each configuration. This is
 the blending used in many games and the one mentioned in this very
 popular Diablo 3 talk that I 100% recommend watching:
 (https://www.gdcvault.com/play/1017660/Technical-Artist-Bootcamp-The-V
 FX).
 The advantage is that it has additive properties such as the black
 background being ignored but in this case the result won’t be as bright and
 also the Material can be tinted black without fading.

 e. Opaque : Use this when the Material isn’t transparent. This is very
 performant and straight forward rendering wise but you probably won’t use
 this for VFX.

 2. Shapes : This is the core of the shader. The shader will calculate a shape result
 before applying the effects. The shape result will be formed by combining up to 3
 different shapes. Each shape can have a different texture, can be scrolled,
 rotated, distorted and more. Shapes can be enabled and disabled at will, you’ll

 10

https://www.gdcvault.com/play/1017660/Technical-Artist-Bootcamp-The-VFX
https://www.gdcvault.com/play/1017660/Technical-Artist-Bootcamp-The-VFX

 always have 1 Shape enabled and then you can add 2 extra ones with the button
 that you’ll find on the bottom of the shape block (and that you can see in the
 following image [“Use Shape 2?”]).

 The workflow will consist on individually setting up each Shape you’ll need using
 all it’s properties and effects (you can see a full breakdown on the Effects and
 Properties Breakdown section) and then combine them to fit your needs. To
 choose how they combine you’ll need to have more than 1 shape enabled and
 this button will appear:

 If you press it you will have access to these options:

 11

 You can see the shape combination operation that is taking place on the bottom
 in bold letters. By default shapes are multiplied together, but you can set the Add
 Shape Results toggle if you prefer to add them instead. With the weight sliders
 you can then fine tune how much influence each shape has.
 If you want to see all the potential behind this combination options please take a
 look at this Gdc Diablo 3 talk that I also recommended watching when talking
 about the Presets above:
 https://www.gdcvault.com/play/1017660/Technical-Artist-Bootcamp-The-VFX

 3. Effects : Effects are applied after the shapes have been combined. The shape
 result is modified by the effects (to see how all effects work and what properties
 they have please read Effects and Properties Breakdown). There are 3 kinds of
 effects:

 a. Color effects: They affect the color (rgb) of the global shape result
 b. Alpha effects: They affect the alpha of the global shape result
 c. Uv and Vertex effects: They affect the texture coordinates of all textures

 (included shapes) and also there’s 1 effect that will displace the target
 mesh vertices over time

 Advanced Configuration and Key Rendering Concepts
 If you are more of a visual learner there’s also a video tutorial:
 https://youtu.be/D7kZRHBUxu0

 12

https://www.gdcvault.com/play/1017660/Technical-Artist-Bootcamp-The-VFX
https://youtu.be/D7kZRHBUxu0

 This is the advanced configuration window:

 Let’s go over each option to see what they do and how they can be used.

 Alpha Blending Modes : Sets the blending of the shader output and will determine how
 the shader result is blended into the final frame. Since the Material will most likely be
 transparent we need to decide how the transparent parts will be blended with the rest of
 the frame. You can read more about it here:
 https://docs.unity3d.com/Manual/SL-Blend.html

 Additive Configuration : Tells the shader this is an additive configuration. This will
 make the global result of the shader grayscale be considered as alpha. This only makes
 sense when the Blending Mode is set to an Additive configuration.

 Premultiply Alpha : This will multiply the shape result alpha into the color, effectively
 darkening the parts where the alpha is lower than 1.

 Premultiply Color : This will multiply the shape result greyscale into the alpha,
 effectively making the result invisible where the color is black. The darker the result is
 the more invisible it will become.

 13

https://docs.unity3d.com/Manual/SL-Blend.html

 Enable Z Write : When enabled the mesh we are rendering the material onto will write to
 the Z Buffer, meaning that other objects sorting will be affected by this mesh. This option
 is useful for meshes that aren’t very transparent and to make sure that all faces on
 meshes that overlap with itself get drawn in the correct order. For example we’ll want to
 use this on a Sphere so that the back faces are rendered after the front faces. You can
 read more about it here: https://docs.unity3d.com/Manual/SL-ZWrite.html

 ZTest Mode : This will dictate how the material interacts with the values of the ZBuffer.
 We can choose when we want to render this material. By default the Test Mode is
 LEqual which means that we’ll render this material when the current depth value is less
 or equal to the one in the ZBuffer. This will guarantee the object is occluded by other
 materials that are closer to the camera. Materials that are in front and write to the
 ZBuffer.
 We can change the ZTest to Always if we want this material to always be visible. You
 can read more about this here:
 https://docs.unity3d.com/Manual/SL-ZTest.html

 Culling Mode : In graphics culling means discard and avoid rendering something. In this
 case culling refers to what faces are discarded based on its orientation. By default it is
 set to Off, which means that we don’t discard any faces, all faces will always be drawn.
 We can switch to Front or Back and discard the faces that are facing towards or away
 from the camera. This is great to avoid rendering part of a mesh, for example on a
 transparent sphere we may want to discard Back faces for a cleaner look. You can read
 more about it here: https://docs.unity3d.com/es/2018.4/Manual/SL-CullAndDepth.html

 Color Write Mask : Allows you to choose what channels the Material will write on. It
 decides the shader output channels. You’ll probably never use this.

 Random Seed : A number that will create variations on all texture scrolling, rotations
 and distortions. This is used to create variations for material instances you are reusing.
 You can break the repeating visual pattern with this. You can change this via script or
 through particle system custom data (read the Random Seed section of the
 documentation to learn how to do so).

 Use Unity Fog : Makes the material be affected by Unity’s fog of the render pipeline you
 are using. Note that in HDRP fog is a post processing effect, so this toggle will have no
 effect.

 14

https://docs.unity3d.com/Manual/SL-ZWrite.html
https://docs.unity3d.com/Manual/SL-ZTest.html
https://docs.unity3d.com/es/2018.4/Manual/SL-CullAndDepth.html

 Enable GPU Instancing : Makes the Material be GPU instanced to save draw calls. For
 this to work the meshes must be the same in all instances too. You can read more about
 it here:
 https://docs.unity3d.com/Manual/GPUInstancing.html

 Render Queue : This will set the order in which materials are rendered. The higher the
 number the later it will render. This can be very important to guarantee that your
 materials get rendered in the order that works for your setup. You can choose how
 transparent objects are sorted in Project Settings, Graphics, Transparency Sort Mode
 and Axis, but in some cases we need to tweak this Render Queue value too to make
 sure we always get the render order we need.

 Particle System Helper Component
 If you are more of a visual learner there’s also a video tutorial:
 https://youtu.be/0knI_Ee4lBU

 The Particle System Helper Component will dramatically accelerate your Particle
 System workflow by saving clicks and typing. By having everything in the same place
 and by automatically refreshing the particle system when a property is changed you can
 get the particle system you are looking for in a matter of seconds. On top of that you
 can create and load particle system presets to accelerate your workflow even further,
 create a template of the setups you use more often and reuse them.

 To add the component you can press the Add Particle System Helper button on the
 asset component inspector (it will only work if a Particle System is present in the
 GameObject):

 Or you can directly add it:

 15

https://docs.unity3d.com/Manual/GPUInstancing.html
https://youtu.be/0knI_Ee4lBU

 Once added it will look like this:

 Hierarchy Helpers allow you to create a copy of the current Particle System as a Child
 or as a Sibling GameObject and will use the new copy number to name the new copy:

 This is great to quickly add more sub particle systems inside a more complex effect.

 Palette Color change takes a New Color as input and then will recolor all Colors and
 Gradients of the Particle System to fit the new color scheme you choose:

 16

 Use this to quickly create color variations of your particle systems.

 Pressing the Custom Data Auto Setup will enable the Custom Data section of the
 Particle System and configure it to set a random timing seed to each particle and also
 will add the vertex streams you need depending if you have effects that use them or not.
 The effects that will use these vertex streams in some cases are the 2 different Fade
 effects and the Texture Offset Custom Stream effect. You can then use the generated
 curves to tweak the effect to your liking (see Custom Vertex Streams and Custom Data
 Auto Setup for more details).

 1. General Options gives you quick access to all main properties of the particle system.
 This section will save you many clicks when used properly and will speed up your
 workflow:

 Values will be fetched when you add the component but you can press the Fetch button
 to fetch the values again if you need to.

 2. Emission Options allows you to quickly set how the particles will be emitted. You
 can choose between 1 burst or constant emission rate and easily tweak the values:

 17

 3. Shape Options will change the emission pattern of the particle system. None means
 that the particles will spawn in the Transform origin.

 4. Over Lifetime Options create a simple Color or Size Over Liftime gradient either
 ascendant or descendant, you can use this to quickly prototype the effect and then fine
 tune the curve to get the exact result you desire.

 5. Particle Helper Presets refer to a copy of the data held by this component. This
 option will allow you to save and load the presets of this component so you can reuse it
 to fit your needs and accelerate your workflow. Note that when you enable this effect the
 script will look for this data all over your project and this can cause a couple second
 freeze if your project has many files.

 6. Particle System Presets is very similar to the previous option but it will save all the
 configuration of the Particle System, it will save a full copy of it that you can then apply

 18

 when you need it. Use this when you want to save some options that this component
 doesn’t support. Note that when you enable this effect the script will look for this data all
 over your project and this can cause a couple second freeze if your project has many
 files.

 At the very bottom of the component you’ll find the Auto Apply On Change Property,
 when this is enabled any property change will cause the Particle System to update. If
 you want to avoid this and manually apply the changes instead disable the toggle and
 use the Apply button instead:

 Asset Window
 If you are more of a visual learner there’s also a video tutorial:
 https://youtu.be/jKA4xc0hA6k

 You can access it by going to Window -> AllIn1VfxToolkitWindow.
 The Asset Window offers you a bunch of settings options and utilities divided in 3
 sections:

 1. Save Paths : Used to set the different save paths of Materials, Presets and Textures
 the asset generates:

 19

https://youtu.be/jKA4xc0hA6k

 Material Save Path: Folder where new materials created with the “Save to Folder”
 button on the asset component will be saved to. See Asset Component Features
 section for more info.

 Particle Presets Save Path: Route where the Particle System Presets will be saved to.
 See Particle System Helper Component section for more info.

 Render Material to Image Save Path: Path for the Textures created with the “Render
 Material To Image” button on the asset component will be saved to. See Asset
 Component Features section for more info.

 2. Texture Editor : Used to edit existing Textures. It can be used to quickly tweak the
 look and to quickly rotate and flip them.

 To use it drag or assign a texture in the Image to Edit slot and then use the properties
 and buttons to change it to your liking:

 20

 Finally press the Save Editor Resulting Image as PNG file to save the edited image into
 the folder of your liking, by default it will suggest you save it in the same folder of the
 original image with a different name, but you can change the save route and name to fit
 your needs.

 3. Texture Creators : Here you can create Normal Map textures for the Screen
 Distortion effect (or for any other use really), Gradient Textures either for the Color
 Ramp effect or for regular greyscale gradients that are very often used as masks for
 other effects or shape textures, atlas textures to randomize your Particle Systems and
 Tileable noise textures to use on your effects.

 21

 Normal/Distortion Map Creator : Makes a Normal Map from a Target Image. Tweak the
 Strength property to make the normal map more pronounced and the Smoothing to blur
 the result. See Screen Distortion section for more info.

 To use the Color Gradient Editor just edit the Color Gradient, choose a texture size
 (usually it can be very small if the filtering is set to Bilinear), choose the texture filtering
 and press the Save button. This can be used to create textures for the Color Ramp
 effect or black and white masks that can then be used in your effects.

 The Texture Atlas / Spritesheet Packer can be used to pack multiple images into a
 single one. This is very useful to create variation on a Particle System for example. We
 can use a 4x4 texture for example and then have the System choose a random one
 each time it plays in the Texture Sheet Animation tab.
 To use this tool, add the desired textures to the Atlas array. Choose the amount of
 Columns and Rows (Note that you’ll need to make sure that there are enough slots to fit
 all your Atlas textures. For example if you have 2 rows and 2 columns you can fit up to 4
 textures, so if the Atlas array has 3 elements one slot will be empty and if the Atlas
 array has more that 4 elements only 4 will show on the final result). Then choose the
 Atlas size and filtering and Save.

 The Tileable Noise Creator , as the name says, allows you to preview, edit and save

 22

 tileable noise textures to use on your effects out of 8 different noise types. Having
 tileable noise that you can create and edit in a few clicks is a massive time saver. Not
 even Photoshop has a quick way of doing this. Here you can do it inside the Unity
 editor, with just a few clicks.
 To use it select a Noise Type and once you move any slider you’ll see the noise
 preview, play around with the properties and when you are happy choose the size,
 filtering and save.

 4. Others : Here all other options will be placed, but for now here is where the AllIn1Vfx
 Material Shader Auto Setup can be done. First select the folder that contains the
 Materials you want to auto setup and then press the button to automatically select the
 correct shader variant the Material needs depending on Render Pipeline and the effects
 that are being used.
 The asset has a few shader variants, 2 for Built-In Render Pipeline, 1 for URP, 1 for
 HDRP and 1 variant that contains the effects that will work out of the box across all 3
 Pipelines. These shader variants will automatically be swapped and maintained by the
 asset during regular use. But this feature is needed to properly configure Materials that
 were created in some other Render Pipeline and that were imported into the project. A
 clear use case of this is converting the Demo Materials to URP or HDRP as described
 in the First Steps section, in those cases we want to convert the Built-In materials to
 SRP ones.

 Textures Setup
 Most of the time it will be a good idea to set the Wrap Mode of the Import Settings of the
 textures you use to Repeat. This will assure a proper result when using scrolling
 textures.

 23

 Saving Prefabs
 By default this asset doesn’t save the Material you are using, instead it keeps it as part
 of the Scene in order to avoid having too many objects cluttering your project. This
 means that by default, when you turn a GameObject with an AllIn1VfxShader material
 into a prefab, the prefab won’t render correctly since it doesn't have a reference to the
 Material inside the Project Asset files.

 In order to save a Prefab you first need to save its Material. You can do so with the
 “Save Material to Folder” button that you’ll find on the asset component:

 Screen Distortion and Creating Distortion Maps
 If you are more of a visual learner there’s also a video tutorial:
 https://youtu.be/jKA4xc0hA6k?t=214

 Screen Distortion is an effect that will distort the final frame based on a Distortion Map
 Texture. Note that this effect is potentially the most performance intensive effect in the
 asset, specially in the Built-In render pipeline. Also note that in Built-In Render Pipeline

 Here’s an example of the effect:

 24

https://youtu.be/jKA4xc0hA6k?t=214

 In the left you can see a test setup that is distorted, it has a fish eye shape in the
 middle. This distortion is set by the Normal Map on the right.

 This Normal map can be created outside of Unity or you can create it inside Unity with
 the All In 1 Vfx Window Texture Creator (see Asset Window section for more details).
 For example we can create a fisheye Distortion Map like this:

 Custom Vertex Streams and Custom Data Auto Setup
 If you are more of a visual learner there’s also a video tutorial:
 https://youtu.be/-xVtAoS_s7k

 Some effects can use the Particle System Custom Data to control them. Those effects
 are both Fades, Texture Offset Custom Stream and Shape Weights Custom Stream. By
 using the Custom Data curves we have fine control over how much we want the
 particles to fade over time or scroll over time.

 Let’s first see how to setup the effects and then we’ll take a look at how to use the
 Custom Data.

 25

https://youtu.be/-xVtAoS_s7k

 To use this features on Fade From Noise Texture or Fade From Final Shape effects we’ll
 need to check the Fade Amount Driven By Vertex Stream Toggle :

 As the toggle says when this is set to true the Custom Data of the Particle System will
 be responsible of changing the Fade Amount over time. If the toggle is set to false the
 alpha of the effect will drive the Fade Amount.

 The Procedural Dissolve works just the same:

 The Texture Offset effect will only be visible on Materials that are on a Particle System
 and will only show the shapes that are enabled, in this case all 3 shapes are enabled:

 26

 We’ll then choose how much each shape gets affected by changing the multiplier
 property of each shape. But on the Custom Data we’ll have only 1 property to control all
 3 shapes, the only way of having the offset be different for each shape is by changing
 the multiplier properties.

 The Shape Weights Custom Stream is similar to the Texture Offset one that we just saw.
 It will only appear in the Material Inspector when used on Particle Systems and also will
 only show Shapes that are enabled:

 Negative values will make the corresponding Shape less visible while positive values
 will make the corresponding Shape. This can be used to fade partial parts of the
 particles in and out.

 To set the Custom Data that you need for any particular Material you can use the
 Particle System Component and press the “Custom Data Auto Setup” button to
 automatically add the needed vertex stream channels:

 27

 After pressing the button the Custom Data setup of the Particle System will look like this
 (if a row is missing it means that the effect that uses it is disabled):

 The row numbered with a red number 1 is the random timing seed explained in the
 Random Seed section.

 The row numbered with a red number 2 is the Fade Amount of both Fade effects (it’s
 shared, but you’ll be using one or the other, not both at the same time).

 The row numbered with a red number 3 and 4 are the Texture Offset amount in the X
 and Y axis respectively. This effect is very useful to scroll a particle texture in a very
 controlled way, for example for a sword slash. Remember to use the Texture Offset mult
 properties to choose how much each shape gets affected by these values.

 Finally, row 5 corresponds to the Shape Weight Offset. This value will be added to the
 Shape Weights that you can find in the Shape Result part of the Material Inspector (it
 will only appear when 2 or more Shapes are present):

 28

 Use the Shape Weight Offset properties to choose how much each Shape will get
 affected by the values on row 5.

 How to Animate Materials
 If you are more of a visual learner there’s also a video tutorial:
 https://youtu.be/zZX1dbJTsPg

 The custom material inspector properties can be animated through the Animation
 window as any other Unity component.

 Please keep in mind that UI material properties can’t be animated using the Animator,
 the reason being that Unity won’t allow you to animate shared material properties. Unity
 UI Images materials are always shared, which means that all Images use the exact
 same material instance of a particular Image and therefore if a property is changed for
 one Image material all the other Images that share material will change too. Since Unity
 won’t allow this behaviour it doesn’t support using the Animator in UI Material
 properties. And unfortunately I can’t do anything about it.

 I recommend using an amazing free asset in the store called DoTween to animate the
 UI material properties through code or if you prefer you can use the function calls
 described in the following section.

 Also consider that since UI material instances are shared you may want to create a
 copy of each material through script on an Awake method

 29

https://youtu.be/zZX1dbJTsPg

 (AllIn1GraphicMaterialDuplicate.cs):
 private void Awake()
 {

 Graphic graphic = GetComponent<Graphic>();
 graphic.material = new Material(graphic.material);

 }

 Scripting
 If you prefer avoiding animations or want to change properties through code you also
 have the possibility. This will be mostly used on Materials assigned to Mesh Renderers,
 it won’t make much sense to use this on Particle Systems.

 You can find the property names by hovering the mouse over any property in the
 Material Inspector:

 To do so you’ll need to use the following Unity functions:
 ● Material.SetFloat:

 https://docs.unity3d.com/ScriptReference/Material.SetFloat.html
 ● Material.SetColor:

 https://docs.unity3d.com/ScriptReference/Material.SetColor.html
 ● Material.SetTexture:

 https://docs.unity3d.com/ScriptReference/Material.SetTexture.html

 You can find all property names on:
 AllIn1VfxToolkit\Shaders\Resources\AllIn1Vfx.shader
 All properties are located from line 5 to 185 and can also be found at the Effects and
 Properties Breakdown section.

 Here an example code snippet:
 Material mat = GetComponent<Renderer>().material;
 mat.SetFloat("_Alpha", 1f);
 mat.SetColor("_Color", new Color(0.5f, 1f, 0f, 1f));
 mat.SetTexture("_MainTex", texture);

 30

https://docs.unity3d.com/ScriptReference/Material.SetFloat.html
https://docs.unity3d.com/ScriptReference/Material.SetColor.html
https://docs.unity3d.com/ScriptReference/Material.SetTexture.html

 *Note that there is an important distinction to be made between a “material” and a
 “sharedMaterial” of a Renderer. You shall use “material” if you only want to
 change a property of that instance of the material. And “sharedMaterial” if you
 want to change the property of all the instances of that material

 Visual Effect Graph (Vfx Graph)
 The new Vfx Graph package (currently still in an experimental phase and only available
 as a package in the Package Manager) currently doesn’t support custom shaders, just
 Shader Graph shaders. If custom shaders support eventually get supported I’ll make an
 update to show how to use the feature as soon as possible.

 How to Enable/Disable Effects at Runtime
 There are 2 ways of achieving this:

 1. All effects have a property value combination that makes them look deactivated
 (usually by reducing the amount or blend property to 0, but it may vary depending
 on the effect). So the most clean way of deactivating and activating effects is by
 enabling all the effects you’ll use and then dynamically changing the property
 values either by animating the properties or by modifying the values by script as
 seen in the Scripting section.

 2. This other way is less efficient, messier and will cause materials to become
 invisible in the final build if you set a combination of effects that isn’t included in
 some other material in your project. So be warned, use this with caution (in
 fact you should probably avoid this option and use option 1 instead) and
 test it on the target platform. If material effects disappear or you get a graphics
 error (object turns pink) at some point make sure to have some material in your
 project that includes the same set of effects than the material that isn’t showing.
 This method consists on enabling and disabling the shader compilation flags at
 runtime, so Unity will compile and replace the shader at runtime (on a final build
 shaders can’t be compiled, so a shader variant with the new keywords will need
 to be available to avoid the errors mentioned). If you are sure to have a shader
 variant for the resulting toggle combination you can use the Enable/Disable
 Keyword method like so:

 Material mat = GetComponent<Renderer>().material;
 …
 mat.EnableKeyword("GLOW_ON");

 31

 mat.DisableKeyword("GLOW_ON");
 (Keyword names of every effect can be found at the Effects and Properties Breakdown
 section)

 If you really want to use this feature and you really know what you are doing and how to
 prevent the aforementioned errors you can also find the effect name by hovering it with
 the mouse in the Material Inspector:

 Random Seed
 The asset shader has a random seed property (_TimingSeed). This property will give
 some variation to the material. Different seed values will cause different scrolling,
 rotations and distortions on the shader, therefore causing a visual distinction between
 the same materials with different seeds. This can help avoid repetition in between
 particles using the same Material or meshes using the same Material.

 For Particle Systems you can add the Particle System Helper Component (see it’s
 section of the documentation) and press the Custom Data Auto Setup button. The 0 to
 100 X axis property of the Custom Data section of the Particle System is the random
 timing seed:

 For Meshes you can just add the All1VfxRandomTimeSeed script to the GameObject
 and the Random seed will be assigned on start. Note that the shader is prepared to
 GPU instance this property, so you could enable GPU Instancing in the Material
 Inspector Advanced Configuration and the instancing won’t break even if you use this
 script on all mesh instances.

 32

 Render Material To Image

 If you press the Render Material To Image the current Texture + Material of the current
 Gameobject will get rendered into a texture that you’ll then be able to save wherever
 you want:

 In the asset window you can change the default save route and the Rendered Image
 Texture Scale. Since the output will look slightly less sharp than the in-engine version
 you can upscale the output to make it more crisp in case you need to.

 This feature is useful to offload some work from the gpu or to create texture variations.
 By baking the result into a texture it means that the gpu won’t need to compute all
 effects every single frame. In any case please keep in mind that the asset is made with
 efficiency in mind, even in low end devices. This is just one more tool at your disposal.

 33

 Please don’t try to optimize early by swapping out all Materials by a rendered image.
 Only use this for performance reasons after running into performance problems (you
 most likely never will, even in low end devices).

 You can also use this feature to pre-render a certain image for some VFX or to
 pre-render a texture that you can then modify with the asset shader. This feature allows
 you to stack and re-apply the asset effects recursively as many times as you need.

 Premade Textures, Meshes and Materials
 The asset includes many textures, meshes and materials that you can use on your
 project and that will allow you to prototype effects and even create full awesome
 professional effects without creating your own assets and saving time on the process.

 Textures Route: Assets\AllIn1VfxToolkit\Demo & Assets\Textures
 Meshes Route: Assets\AllIn1VfxToolkitDemo & Assets\\Meshes
 Materials Route: Assets\AllIn1VfxToolkit\Demo & Assets\Demo\Materials

 There’s also many pre-made prefabs of complete effects on the Demo scene that you
 can also use on your projects.

 Helper Scripts and Other Utilities
 The asset includes some extra scripts and utilities that can come in handy in some
 cases. Here’s a list of all of them:

 1. Particle System Helper (AllIn1ParticleHelperComponent.cs) : Covered in the
 Particle System Helper Component section.

 2. Look At (AllIn1LookAt.cs) : Used to make a GameObject face in a particular
 direction. You can choose if you want the facing direction to update every frame or only
 on start. You can choose a Transform to be the target or target the Main Camera.
 Finally you can choose what axis of the transform should face the target, by default the
 Forward vector will be the one to face the target. But you can choose whatever axis you
 prefer.

 3. Bounce Animation (AllIn1VfxBounceAnimation.cs) : It will animate the transform
 position back and forth over time. The starting position will be the origin point and then
 you can choose a Target Offset and a speed to tweak the animation.

 34

 4. Auto Rotate (AllIn1AutoRotate.cs) : Rotates the transform over time around the axis
 of your choosing.

 5. Auto Destroy (AllIn1VfxAutoDestroy.cs) : The GameObject will get destroyed in N
 seconds after getting instantiated. This can be used when instantiating certain meshes
 that need to be destroyed after some time for example. If you want to clean up Particle
 Systems, set the Stop Action to Destroy instead (it’s a better practice since it’s cleaner
 and more performant).

 6. Scroll Shader Property (AllIn1VfxScrollShaderProperty.cs) : Takes the name (as a
 string, see Effects and Properties Breakdown to see the properties names) of the
 shader of the current Material used in the Renderer of the current GameObject or the
 Material we pass in as a parameter and increases or decreases its value over time. If
 needed it can apply a modulo operator, this is useful if we always want to keep the
 property in a certain range, like 0-360 for example. A new back and forth toggle has
 been added too, this will ensure that the property goes from the initial value to the max
 value back and forth, use the Scroll Speed property to choose the speed of the back
 and forth.

 7. Screen Shaker and DoShake (AllIn1Shaker.cs and AllIn1DoShake) : These 2
 components combined can shake any GameObject Transform, but it was created as a
 simple but effective camera shaker that is currently used in the Demo. You can take a
 look at the Demo scene to see how it’s setup but the idea is to have an empty parent
 object for the camera and then have a child object with the actual Camera component in
 the 0,0,0 position. This will allow the camera to shake correctly regardless of the
 position and rotation of the parent object.

 The DoShake component can be added to any effect that needs to shake the camera
 when instantiated. This component will call
 AllIn1Shaker.i.DoCameraShake(shakeAmount); on Start. Since the Shaker component
 follows a singleton pattern you can use the above function call to activate a shake
 wherever needed.

 8. Scale Tween (AllIn1DemoScaleTween.cs) : This component will create a Scale
 Down, Scale Up procedural code animation when the function ScaleUpTween() or
 ScaleDownTween() is called. This is used in the Demo buttons and can be handy to
 polish UI and gameplay interactions. There are many ways to do this, but I decided to
 document in case it is useful for someone.

 35

 Effects and Properties Breakdown
 The AllIn1Vfx shader has a custom Material Inspector that allows you to activate and
 deactivate effects. When an effect is activated it displays it’s properties so that they can
 be modified:

 In this image we can see how the Glow Color Effect is enabled and all its properties.

 Remember that effects will only be computed and therefore cost performance when
 enabled, otherwise the shader won’t compile the effect code and therefore it will cost 0
 performance since the code won’t even be present on the shader.

 Also note the “R” button next to each property that stands for “Reset” . Pressing this
 button will restore the property to its default value.

 Keep in mind that there’s an example of every effect on one of the Demo scene
 sample effects. Looking into the Demo is probably the best way to discover ways
 of using the asset and to see what each property does

 Down below all the shader properties are explained. In between [] (ex:[GLOW_ON]) you
 can find the shader keyword name of each effect (see How to Enable/Disable Effects at
 Runtime section to see how to use it). In between () (ex: _MainTex) you can find the
 shader property names in case you want to modify them in a script (see Scripting
 section).

 Before reading this please make sure to be familiar with the shader by reading the

 36

 Shader Structure and Usage section or by taking a look at the asset Youtube playlist
 before moving on.

 Reminder of how the asset works: First the shapes get combined, this shape result will
 have the rest of effects applied to it. We’ll call Global something that affects the final
 result at the end of this process.

 ● Global Properties
 ○ Global Color (_Color): The Global Tint color
 ○ Global Alpha (_Alpha): Global Transparency

 ● Shape Properties and Effects (N means the shape number but Shape 1 omits the
 number in properties. So _ShapeNColor would be _ShapeColor for Shape 1,
 _Shape2Color for Shape 2 and _Shape3Color for Shape 3. With effects such as
 SHAPE_N_CONTRAST_ON the N doesn’t omit any number, so shape 1 will be
 SHAPE1CONTRAST_ON. Sorry if this is confusing but changing this meant
 losing all the demo material values. In any case these names are only used for
 scripting and the asset will very rarely be modified via script)

 ○ Shape1 Texture (_MainTex): Shape 1 Texture and also the image that will
 be automatically assigned in Sprite Renderers and UI Image components.
 Renderer components that have an Image property will override this
 texture. This will be the base shape texture that will be used to get
 combined with the other 2 shapes

 ○ Shape 2 and 3 Texture (_Shape2Tex and _Shape3Tex): These 2 shape
 textures will get combined with shape 1 and with each other if they are
 both enabled. These 2 textures will always be set through the material
 inspector

 ○ ShapeN Color (_ShapeNColor): Tint Color of the Shape Texture. This will
 be applied before combining the shapes and the color is HDR so can be
 used to affect color intensity and therefore glow

 ○ ShapeN X/Y Speed (_ShapeNXSpeed and _ShapeNXSpeed): These 2
 properties are in charge of scrolling the shape texture over time. The
 higher the number, the faster the scroll will be

 ○ ShapeN Contrast [SHAPE_N_CONTRAST_ON]: Used to apply more or
 less contrast and more or less brightness to the shape texture before
 mixing the other shapes and applying effects

 ■ ShapeN Contrast (_ShapeNContrast): High values mean high
 contrast, low values mean low contrast (the shape texture turns
 gray when untinted)

 37

 ■ ShapeN Brightness (_ShapeNBrightness): Brightness amount we
 add to the shape texture

 ○ ShapeN Distortion [SHAPE_N_DISTORT_ON]: Used to distort the shape
 texture before mixing the other shapes and applying effects

 ■ Distortion Texture (_ShapeNDistortTex): Noise texture that
 determines how the distortion is done

 ■ Distortion Amount (_ShapeNDistortAmount): How much the image
 is distorted following the distortion texture pattern

 ■ Scroll Speed X and Y (_ShapeNDistortXSpeed and
 _ShapeNDistortYSpeed): Scroll speed of the distortion texture in
 the X axis and Y axis

 ○ ShapeN Rotation [SHAPE_N_ROTATE_ON]: Used to rotate the shape
 texture, this will work regardless of the tiling and offset of the textures

 ■ Rotation Offset (_ShapeNRotationOffset): The initial rotation of the
 shape texture (measured in radians). This will be applied before the
 rotation over time of the next property

 ■ Rotation Speed (_ShapeNRotationSpeed): How fast the shape
 texture will turn (measured in radians)

 ○ ShapeN RGB is Shape Color, Red Channel Is Alpha
 [SHAPE_N_SHAPECOLOR_ON]: When enabled the greyscale value from
 0 to 1 of the red channel of the shape texture gets used as the alpha
 (transparency) of the shape texture and the RGB of the shape will be the
 Shape N Color property

 ○ ShapeN Screen Position UVs [SHAPE_N_SCREENUV_ON]: When
 enabled the shape texture will be samples using screen space coordinates
 instead of the model or quad UVs

 ■ Scale With Dist Amount (_ScreenUvShNDistScale): If set to 1 the
 screen space UVs will scale the further/closer we get, so the shape
 texture will have a constant size. If 0 it will look as if the shape
 texture shrinks and expands as we get further/closer

 ○ ShapeN Debug [SHAPEDEBUG_ON]: When enabled only the current
 shape we have toggled will be rendered. This is extremely useful to see
 how each shape looks before combining with the other shapes and before
 applying effects

 ○ ShapeN RGB Weight (_ShapeNColorWeight): Affects how the shape RGB
 will be combined with other shapes RGB. See Shader Structure and
 Usage section for more detailed info

 38

 ○ ShapeN A Weight (_ShapeNAlphaWeight): Affects how the shape alpha
 (A) will be combined with other shapes alpha. See Shader Structure and
 Usage section for more detailed info

 ● Color Effects : These effects apply color changes to the shape combination
 result

 1. Glow [GLOW_ON]: Needs Post Processing Bloom for better visuals
 a. Glow Color (_GlowColor): Color of the Glow, has HDR and can also affect

 how bright the material shines by increasing the HDR intensity
 b. Glow Intensity (_Glow): Indicates how bright the Glow Color will shine
 c. Glow Global Intensity (_GlowGlobal): Indicates how bright the global result

 will shine
 d. Glow Texture (_GlowTex): Acts as a mask. The glow will only be applied

 where the alpha of this texture is greater than 0
 2. Color Ramp [COLORRAMP_ON]: Takes a gradient as an input and maps the

 color of the shapes result to this gradient. When the Material is Saved To Folder
 we can use a live editable gradient instead of a static gradient texture

 a. Color Ramp Texture (_ColorRampTex): Static gradient texture that the
 user needs to provide. The resulting colors will get mapped to this
 gradient. Dark colors will get mapped to the left of the gradient and bright
 colors to the right of the gradient

 b. Color Ramp Luminosity (_ColorRampLuminosity): This will get added to
 the greyscale value the shader uses to map the colors. The higher this
 value the more we’ll skew results to the right of the gradient

 c. Color Ramp Gradient (_ColorRampTexGradient): If the Material is Saved
 To Folder and the Use Editable Gradient box is toggled this property can
 be used to dynamically edit and create a gradient color

 d. Color Ramp Blend (_ColorRampBlend): Used to blend the gradient in and
 out. A Blend amount of 0 will make this effect invisible

 3. Color Grading [COLORGRADING_ON]: Similar to Color Ramp but more
 lightweight and slightly more limited. It works just like Color Ramp but it
 interpolates the result color across 3 input colors instead of a full gradient

 a. Light Color Tint (_ColorGradingLight): Equivalent to the very right of the
 color ramp. Light color values will be mapped to this color

 b. Mid Tone Color Tint (_ColorGradingMiddle): Equivalent to the center of the
 color ramp. Middle range color values will be mapped to this color

 c. Dark/Shadow Color Tint (_ColorGradingDark): Equivalent to the very left
 of the color ramp. Dark color values will be mapped to this color

 39

 d. Mid Point (_ColorGradingMidPoint): Used to skew the result towards the
 Light Color or the Dark Color input

 4. Hue Shift and Saturation [HSV_ON]:
 a. Hue Shift (_HsvShift): How much the colors will be shifted
 b. Hue Shift Saturation (_HsvSaturation): Saturation of the hue shift result
 c. Hue Shift Bright (_HsvBright): Brightness of the hue shift result

 5. Fresnel / Rim Color: Creates a rim light / fresnel effect around the target Mesh.
 This effect can add color or make the Mesh transparent around the rims

 a. Rim Color (_RimColor): Color of the effect, has HDR and can also affect
 how bright the material shines by increasing the HDR intensity

 b. Rim Bias (_RimBias): Adds this amount to the “amount of rim” the shader
 detects and therefore makes all parts of the mesh be considered part of
 the rim (in most cases you’ll want to use the Rim Scale instead)

 c. Rim Scale (_RimScale): Multiplies this amount to the “amount of rim” the
 shader detects and therefore makes the rim wider

 d. Rim Power (_RimPower): Exponent of the “amount of rim” the shader
 detects and therefore can be used to further fine tune the rim width

 e. Rim Intensity (_RimIntensity): Indicates how bright the Rim Color will shine
 f. Add Amount (_RimAmount): 0 means that the rim color we calculate will

 be multiplied against the shape result, this is useful when we want the
 effect to not affect darker parts, it looks like it follows the texture. 1 means
 the rim color will be added and always visible regardless of the shape
 color. Any value in between will be an interpolation between both results

 g. Rim Erodes Alpha (_RimErodesAlpha): Increase this value and set Rim
 Intensity to 0 to fade the model rim

 6. Intersection Glow[DEPTHGLOW_ON]: Applies glow to intersecting geometry that
 writes to the depth buffer. Needs Post Processing Bloom for better visuals. For
 this effect to work as intended ZWrite should be disabled

 a. Depth Distance (_DepthGlowDist): How sensible the depth difference is.
 The higher the value the sharper the glow will be

 b. Depth Power (_DepthGlowPow): Exponent of the depth difference that
 creates the glow mask

 c. Glow Color (_DepthGlowColor): Color of the Glow, has HDR and can also
 affect how bright the material shines by increasing the HDR intensity

 d. Glow Color Intensity (_DepthGlow): Indicates how bright the Glow Color
 will shine

 e. Global Glow Intensity (_DepthGlowGlobal): Indicates how bright the global
 result will shine (needs Bloom in the scene)

 40

 7. Posterize [POSTERIZE_ON]: Limits the amount of colors creating a banding
 effect

 a. Posterize Number of Colors (_PosterizeNumColors): The higher the
 number the more different colors the material will display

 8. Backface Tint [BACKFACETINT_ON]: Tints the front and back face of the target
 mesh. We consider the backface the face that has the normal vector pointing in
 the opposite direction of what we would regularly expect on a surface

 a. Backface Tint (_BackFaceTint): Tint Color back face of the mesh. The
 color is HDR so can be used to affect color intensity and therefore glow

 b. FrontfaceTint (_FrontFaceTint): Tint Color front face of the mesh. The
 color is HDR so can be used to affect color intensity and therefore glow.
 Usually we’ll keep this white to not affect regular facing mesh faces

 9. Fake Light And Shadow [LIGHTANDSHADOW_ON]: As the name says, this isn’t
 real lighting that will work with Unity lighting components, instead this is a
 simplified performant lighting approximation that can be used to give some more
 depth to your effects. For this to work you’ll need to have an active
 AllIn1VfxFakeLightDirSetter component in the scene, this component will tell the
 shader what the direction of the light is. Configure said component to choose
 when the light direction is updated and to choose the target transform that will
 determine the light direction with its forward vector. Video using and explaining
 the effect: https://youtu.be/F24wH7q34Xs

 a. Light Amount (_LightAmount): This is how much extra luminosity we want.
 0 means no extra luminosity and 1 means that we want to light the object
 based on the direction of the target light set in AllIn1VfxFakeLightDirSetter

 b. Light Color (_LightColor): The color of the fake light, use this to choose the
 tint of the light set by the previous property. Note that this is an HDR color
 and that can be used to make the object glow by increasing the intensity

 c. Shadow Amount (_ShadowAmount): This tells the shader what is the
 darkest shadow value. So 0 will mean that the shadows can be completely
 black and 1 will mean that the shadows won’t be visible at all

 d. Shadow Min and Max (_ShadowStepMin and _ShadowStepMax): This is
 used to choose the banding on the shadow, the closer these values are
 together the more cartoon the shadow will look

 10. Shape 1 Mask [SHAPE1MASK_ON]: Prevents Shape1 from being affected by
 other shapes and distortions. This is used to keep certain parts of the shape
 intact, for example in a trail to make sure the beginning of the trail has no gaps

 a. Shape 1 Mask Texture (_Shape1MaskTex): Mask that tells the shader
 what parts of Shape 1 to keep. White means keep Shape 1 intact and
 black means keep shape result, in between values get blended

 41

https://youtu.be/F24wH7q34Xs

 b. Shape 1 Mask Power (_Shape1MaskPow): Exponent of the Mask Texture,
 used to fine tune the results

 ● Alpha Effects : These effects apply color changes to the shape combination
 alpha result

 1. Alpha Mask [MASK_ON]: Will make certain parts of the global result transparent
 a. Mask Texture (_MaskTex): White on the texture means unaltered original

 opacity. Black means fully invisible
 b. Mask Power (_MaskPow): Exponent of the Mask Texture, used to fine

 tune the effect without doing any change to the Mask Texture
 2. Fade From Noise Texture (Dissolve) [FADE_ON]: Uses a Fade Texture to

 fade/dissolve the global result. Particle system alpha or Custom Data Streams
 can be used to control this dissolve. A burn texture can be added to have a
 different color around dissolve edges

 a. Fade Amount Affects Global Transparency (Toggle Box)
 [ALPHAFADETRANSPARENCYTOO_ON]: When checked the global
 transparency will decrease with the Fade Amount

 b. Fade Amount Driven By Vertex Stream? (Toggle Box that only appear
 when a Particle System is present) [ALPHAFADEINPUTSTREAM_ON]:
 When enabled the Fade Amount can be driven with Custom Data streams.
 Check the Custom Vertex Streams and Custom Data Auto Setup for more
 details

 c. Fade Texture (_FadeTex): Maps how the fade will be made. The fade will
 be made from black to white

 d. Fade Amount (_FadeAmount): How much fade to apply. -0.1 is no fading
 and 1 is completely faded

 e. Fade Transition (_FadeTransition): How smooth the dissolve edges are.
 The higher the number the smoother it will be

 f. Fade Power (_FadePower): The exponent of the fade amount, used to
 tweak how soon/late the fade happens

 g. Speed X/Y Axis (_FadeScrollXSpeed and _FadeScrollYSpeed): Scroll
 speed of the fade texture in the X axis and Y axis

 h. Fade Burn Texture (_FadeBurnTex): Texture of the burned edge
 i. Fade Burn Color (_FadeBurnColor): Color of the burned edges, has HDR

 and can also affect how bright the material shines by increasing the HDR
 intensity

 j. Fade Burn Width (_FadeBurnWidth): How smooth the burn edges are.
 The higher the number the smoother it will be

 42

 k. Fade Burn Glow (_FadeBurnGlow): Indicates how bright the texture will
 shine (needs Bloom in the scene)

 3. Fade From Final Shape (Procedural Dissolve) [ALPHAFADE_ON]: Almost
 identical to the previous effect but takes the final shape as fade mask instead of
 taking a fade texture

 a. Fade Amount Affects Global Transparency (Toggle Box)
 [ALPHAFADETRANSPARENCYTOO_ON]: When checked the global
 transparency will decrease with the Fade Amount

 b. Fade Amount Driven By Vertex Stream? (Toggle Box that only appear
 when a Particle System is present) [ALPHAFADEINPUTSTREAM_ON]:
 When enabled the Fade Amount can be driven with Custom Data streams.
 Check the Custom Vertex Streams and Custom Data Auto Setup for more
 details

 c. Use grayscale as alpha [ALPHAFADEUSEREDCHANNEL_ON]: Enable
 this on additive configurations or when the shape result has no alpha. This
 will premultiply the red channel of the shape result into the alpha channels
 giving better results on the described cases

 d. Use Shape1 as fade mask [ALPHAFADEUSESHAPE1_ON]: When
 checked the shader will take Shape1 as fade mask input instead of using
 the combined shape result (only useful when using more than 1 shape)

 e. Fade Amount (_AlphaFadeAmount): How much fade to apply. -0.1 is no
 fading and 1 is completely faded

 f. Fade Transition (_AlphaFadeSmooth): How smooth the dissolve edges
 are. The higher the number the smoother it will be

 g. Fade Power (_AlphaFadePow): The exponent of the fade amount, used to
 tweak how soon/late the fade happens

 4. Soft Particles / Intersection Fade [SOFTPART_ON]: Fades the global result when
 close to other meshes that write to the depth buffer. Used to fade things that get
 close to the floor for example

 a. Soft Particles Factor (_SoftFactor): The higher this value is the thinner the
 fade transition will be

 5. Camera Distance Fade [CAMDISTFADE_ON]: Fades the global result when the
 camera is either too close or too far away

 a. Far Fade Start Point (_CamDistFadeStepMin): At this distance from the
 cam the material will start to fade

 b. Far Fade End Point (_CamDistFadeStepMax): At this distance from the
 cam the material will be completely faded

 c. Close Fade Start Point (_CamDistProximityFade): When the camera is
 closer than this distance the material will start fading

 43

 6. Alpha Remap [ALPHASMOOTHSTEP_ON]: Remaps the global result alpha to a
 custom range of your liking

 a. Smoothstep Min (_AlphaStepMin): Low bound of the new alpha range,
 where the previous alpha was 0 now it will be Smoothstep Min

 b. Smoothstep Max (_AlphaStepMax): High bound of the new alpha range,
 where the previous alpha was 1 now it will be Smoothstep Max.
 Everything in between gets interpolated

 7. Alpha Cutoff [ALPHACUTOFF_ON]: Used to discard pixels and reduce overdraw
 a. Alpha cutoff value (_AlphaCutoffValue): Pixels that are more transparent

 than this value are not drawn. This is useful to make more cartoon looking
 effects and to discard unwanted transparencies from certain effects

 ● UV and Vertex Effects : These effects will affect the texture coordinates of the
 textures used by the shader or the vertex position of the mesh the material is
 using

 1. Global Distortion [DISTORT_ON]: It will distort all textures used by the shader
 a. Distortion Texture (_DistortTex): Noise texture that determines how the

 distortion is done
 b. Distortion Amount (_DistortAmount): How much the image is distorted

 following the texture pattern
 c. Distortion scroll speed (_DistortTexXSpeed and _DistortTexYSpeed):

 Scroll speed of the distortion texture in the X axis and Y axis
 2. Global Polar Coordinates [POLARUV_ON]: Transforms the uv coordinates into

 polar coordinates (this effect looks goods with tiling on the textures + texture
 scrolling)

 a. Polar Coords affects Distortion textures [POLARUVDISTORT_ON]: We
 may or may not want the distortion textures to be transformed to polar
 coordinates. This toggle allows you to choose

 3. Shape Weights Custom Stream [SHAPEWEIGHTS_ON]: This effect will only be
 visible when viewing the Material from an object that has a Particle System on it
 or if the effect was already active. The effect can be used to change the weights
 of each Shape through a Particle System Custom Data, the ones that you can
 find in the Shape Result tab of the Material when more that 1 Shape is active

 a. Shape N Blend Offset (_ShNBlendOffset): This value will be multiplied by
 the offset value that comes through the vertex stream. It allows us to
 choose the direction and magnitude of the offset

 4. Texture Offset Custom Stream [OFFSETSTREAM_ON]: This effect will only be
 visible when viewing the Material from an object that has a Particle System on it

 44

 or if the effect was already active. The effect can be used to scroll or offset each
 Shape texture through a Particle System Custom Data

 a. Shape N Offset Mult (_OffsetShN): This is the multiplier of the offset value
 that comes through the vertex stream. It allows us to choose how much
 effect the weight change should have over each shape and what direction
 they scroll on. So with only 1 vertex stream value we can affect each
 shape differently

 5. Shape Texture Offset [SHAPETEXOFFSET_ON]: This effect will help us avoid
 repetition on objects that use this same Material. It will use the Random Time
 Seed (_TimingSeed) to offset Shape textures

 a. Shape N Mult (_RandomShNMult): Controls how much the Timing Seed
 will offset each Shape, 0 means no variation, 1 means that it will fully use
 the Timing Seed but it will probably give you the same results than 0 since
 the texture coordinates may loop around perfectly. Try using values
 between 0 and 1 for better results

 6. Global Texture Scroll [TEXTURESCROLL_ON]: It will scroll all textures the
 shader uses

 a. Texture Scroll Speed X (_TextureScrollXSpeed): Scrolling speed on the X
 axis

 b. Texture Scroll Speed Y (_TextureScrollYSpeed): Scrolling speed on the Y
 axis

 7. Twist [TWISTUV_ON]
 a. Twist Amount (_TwistUvAmount): How much all textures are twisted
 b. Twist Pos X Axis (_TwistUvPosX): Position of the center of the twist on the

 X axis (0 is left and 1 is right)
 c. Twist Pos Y Axis (_TwistUvPosY): Position of the center of the twist on the

 Y axis (0 is bottom and 1 is top)
 d. Twist Radius (_TwistUvRadius): The radius of the twist effect

 8. Wave [WAVEUV_ON]: Distort waves from left to right
 a. Wave Amount (_WaveAmount): How many waves we make
 b. Wave speed (_WaveSpeed): How fast the wave scrolls
 c. Wave Strength (_WaveStrength): How much the wave affects the textures
 d. Wave X Axis (_WaveX): Position of the wave origin on the X axis (0 is left

 1 is right)
 e. Wave Y Axis (_WaveY): Position of the wave origin on the Y axis (0 is

 bottom 1 is top)
 9. Round Wave [ROUNDWAVEUV_ON]: Radial distort waves

 a. Round Wave Strength (_RoundWaveStrength): How much the wave
 affects the textures

 45

 b. Round Wave Speed (_RoundWaveSpeed): How fast the wave scrolls
 10. Hand Drawn [DOODLE_ON]

 a. Hand Drawn Amount (_HandDrawnAmount): How much of a distortion we
 apply to make it look hand drawn frame a frame

 b. Hand Drawn Speed (_HandDrawnSpeed): How often we distort the
 textures

 11. Pixelate [PIXELATE_ON]
 a. Pixelate size (_PixelateSize): The lower the number the more pixelated

 the textures get. This effect looks bad when combined with distortions
 12. Trail Width [TRAILWIDTH_ON]: Offers you fine control over the scale of the

 vertical texture coordinate. This allows you to scale a trail without the common
 Trail Renderer component artifacts. When using this please keep a constant
 width across the whole trail in the Trail Renderer component. This component
 needs the material to be Saved To Folder in order to work

 a. Trail Width Power (_TrailWidthPower): The exponent of the trail width set
 by the following property. Allows to fine tune the results without editing the
 gradient

 b. Trail Width Gradient (_TrailWidthGradient): A custom gradient property
 that allows you to edit a texture with the Unity gradient window (read the
 Custom Gradient Property Drawer for more info). Black means scale 0
 and therefore 0 width trail. White means scale 1 and therefore maximum
 scale width trail

 13. Shake [SHAKEUV_ON]: Shakes all texture coordinates
 a. Shake Speed (_ShakeUvSpeed): How fast it shakes
 b. Shake X Multiplier (_ShakeUvX): The higher the value the more it will

 move on the X axis while shaking
 c. Shake Y Multiplier (_ShakeUvY): The higher the value the more it will

 move on the Y axis while shaking
 14. Vertex Offset [VERTOFFSET_ON]: Displaces the vertices of the mesh

 a. Offset Noise Texture (_VertOffsetTex): Tells the shader how to offset the
 vertices. 1 means maximum offset, 0 means no offset

 b. Offset Amount (_VertOffsetAmount): The offset amount, this will set the
 max offset distance

 c. Offset Power (_VertOffsetPower): Exponent of the offset amount used to
 fine tune the effect

 d. Scroll Speed X/Y (_VertOffsetTexXSpeed and _VertOffsetTexYSpeed):
 How fast the Offset Noise Texture will scroll on the X and Y axis

 46

 Custom Gradient Property Drawer
 The asset shaders use a custom Gradient Property Drawer on some shader properties
 that allows you to use the built-in Unity gradient inspector to create a texture that will be
 saved inside the Material that uses it.

 The properties that use this custom drawer are the Color Ramp Gradient in the Color
 Ramp effect (when Use Editable Gradient toggle is enabled) and the Trail Width
 Gradient property on the Trail Width Effect.

 If you create a gradient texture but then you change your mind and you don’t use it any
 more you can delete it by right clicking on the Material that holds the texture and press
 AllIn1Vfx -> Remove All Gradient Textures:

 Running out of Shader Keywords
 If you are using other assets or if you’ve written some complex shaders yourself you
 may run out of shader Keywords. Unity hass 256 possible global Keywords for shaders,
 Unity itself takes around 60 of them, so the user has around 190 available Keywords.
 This asset uses many Keywords, so running out of them may be a possibility if you are
 using other assets.

 So what’s the solution? Since Unity 2019.1 Unity has included local Keywords. This
 asset is prepared to work with any Unity version and that's why these local Keywords
 aren’t used. But if you are on Unity 2019.1 onward this is what you can do:

 1. Go to: AllIn1VfxToolkit\Shaders\Resources
 2. There you'll all shader variants there
 3. Open the shaders you use
 4. Change all shader_feature for shader_feature_local (in visual studio ctrl+f will

 open the search and replace bar)

 47

 *Unity will only accept 64 local keywords (shader_feature_local), with new
 updates and features the shader has slightly surpassed this number. You will
 need to leave out a few keywords as global keywords (shader_feature). Keep in
 mind that you will only run out of keywords if you have other assets with big
 shaders in your project and that in any case you can just replace the keywords on
 those assets to be local too.

 Credits
 This asset has been made possible thanks to the collaboration of 2 amazing
 professional VFX artists that made the majority of the Demo examples and provided
 valuable feedback after using early versions of the asset.

 These artists are:
 ● Dmitry Bogatov (also known as Destroyeer):

 ○ https://twitter.com/DestroyeerVFX
 ○ https://www.artstation.com/Destroyeer

 ● Yos Ytomacedo:
 ○ https://twitter.com/YYtomacedo
 ○ https://www.artstation.com/yosdevvfx

 A few assets under CC0 1.0 Universal license are sourced from Kenne:
 https://www.kenney.nl/assets

 Special thanks to my friend Antón Miranda for putting together an amazing cover art
 image, trailer and screenshots for the storefront.

 48

https://twitter.com/DestroyeerVFX
https://www.artstation.com/Destroyeer
https://twitter.com/YYtomacedo
https://www.artstation.com/yosdevvfx
https://www.kenney.nl/assets

