You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
	
	
		
			256 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			GDScript
		
	
		
		
			
		
	
	
			256 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			GDScript
		
	
| 
											2 years ago
										 | class_name TreeNode | ||
|  | extends RefCounted | ||
|  | 
 | ||
|  | # Based on https://rachel53461.wordpress.com/2014/04/20/algorithm-for-drawing-trees/ | ||
|  | 
 | ||
|  | const SIBLING_DISTANCE: float = 20.0 | ||
|  | const LEVEL_DISTANCE: float = 40.0 | ||
|  | 
 | ||
|  | var x: float | ||
|  | var y: float | ||
|  | var mod: float | ||
|  | var parent: TreeNode | ||
|  | var children: Array[TreeNode] | ||
|  | 
 | ||
|  | var item: GraphNode | ||
|  | 
 | ||
|  | 
 | ||
|  | func _init(p_item: GraphNode = null, p_parent: TreeNode = null) -> void: | ||
|  | 	parent = p_parent | ||
|  | 	item = p_item | ||
|  | 
 | ||
|  | 
 | ||
|  | func is_leaf() -> bool: | ||
|  | 	return children.is_empty() | ||
|  | 
 | ||
|  | 
 | ||
|  | func is_most_left() -> bool: | ||
|  | 	if not parent: | ||
|  | 		return true | ||
|  | 	return parent.children.front() == self | ||
|  | 
 | ||
|  | 
 | ||
|  | func is_most_right() -> bool: | ||
|  | 	if not parent: | ||
|  | 		return true | ||
|  | 	return parent.children.back() == self | ||
|  | 
 | ||
|  | 
 | ||
|  | func get_previous_sibling() -> TreeNode: | ||
|  | 	if not parent or is_most_left(): | ||
|  | 		return null | ||
|  | 	return parent.children[parent.children.find(self) - 1] | ||
|  | 
 | ||
|  | 
 | ||
|  | func get_next_sibling() -> TreeNode: | ||
|  | 	if not parent or is_most_right(): | ||
|  | 		return null | ||
|  | 	return parent.children[parent.children.find(self) + 1] | ||
|  | 
 | ||
|  | 
 | ||
|  | func get_most_left_sibling() -> TreeNode: | ||
|  | 	if not parent: | ||
|  | 		return null | ||
|  | 
 | ||
|  | 	if is_most_left(): | ||
|  | 		return self | ||
|  | 
 | ||
|  | 	return parent.children.front() | ||
|  | 
 | ||
|  | 
 | ||
|  | func get_most_left_child() -> TreeNode: | ||
|  | 	if children.is_empty(): | ||
|  | 		return null | ||
|  | 	return children.front() | ||
|  | 
 | ||
|  | 
 | ||
|  | func get_most_right_child() -> TreeNode: | ||
|  | 	if children.is_empty(): | ||
|  | 		return null | ||
|  | 	return children.back() | ||
|  | 
 | ||
|  | 
 | ||
|  | func update_positions(horizontally: bool = false) -> void: | ||
|  | 	_initialize_nodes(self, 0) | ||
|  | 	_calculate_initial_x(self) | ||
|  | 
 | ||
|  | 	_check_all_children_on_screen(self) | ||
|  | 	_calculate_final_positions(self, 0) | ||
|  | 
 | ||
|  | 	if horizontally: | ||
|  | 		_swap_x_y(self) | ||
|  | 		_calculate_x(self, 0) | ||
|  | 	else: | ||
|  | 		_calculate_y(self, 0) | ||
|  | 
 | ||
|  | 
 | ||
|  | func _initialize_nodes(node: TreeNode, depth: int) -> void: | ||
|  | 	node.x = -1 | ||
|  | 	node.y = depth | ||
|  | 	node.mod = 0 | ||
|  | 
 | ||
|  | 	for child in node.children: | ||
|  | 		_initialize_nodes(child, depth + 1) | ||
|  | 
 | ||
|  | 
 | ||
|  | func _calculate_initial_x(node: TreeNode) -> void: | ||
|  | 	for child in node.children: | ||
|  | 		_calculate_initial_x(child) | ||
|  | 	if node.is_leaf(): | ||
|  | 		if not node.is_most_left(): | ||
|  | 			node.x = node.get_previous_sibling().x + node.get_previous_sibling().item.layout_size + SIBLING_DISTANCE | ||
|  | 		else: | ||
|  | 			node.x = 0 | ||
|  | 	else: | ||
|  | 		var mid: float | ||
|  | 		if node.children.size() == 1: | ||
|  | 			var offset: float = (node.children.front().item.layout_size - node.item.layout_size) / 2 | ||
|  | 			mid = node.children.front().x + offset | ||
|  | 		else: | ||
|  | 			var left_child := node.get_most_left_child() | ||
|  | 			var right_child := node.get_most_right_child() | ||
|  | 			mid = (left_child.x + right_child.x + right_child.item.layout_size - node.item.layout_size) / 2 | ||
|  | 
 | ||
|  | 		if node.is_most_left(): | ||
|  | 			node.x = mid | ||
|  | 		else: | ||
|  | 			node.x = node.get_previous_sibling().x + node.get_previous_sibling().item.layout_size + SIBLING_DISTANCE | ||
|  | 			node.mod = node.x - mid | ||
|  | 
 | ||
|  | 	if not node.is_leaf() and not node.is_most_left(): | ||
|  | 		_check_for_conflicts(node) | ||
|  | 
 | ||
|  | 
 | ||
|  | func _calculate_final_positions(node: TreeNode, mod_sum: float) -> void: | ||
|  | 	node.x += mod_sum | ||
|  | 	mod_sum += node.mod | ||
|  | 
 | ||
|  | 	for child in node.children: | ||
|  | 		_calculate_final_positions(child, mod_sum) | ||
|  | 
 | ||
|  | 
 | ||
|  | func _check_all_children_on_screen(node: TreeNode) -> void: | ||
|  | 	var node_contour: Dictionary = {} | ||
|  | 	_get_left_contour(node, 0, node_contour) | ||
|  | 
 | ||
|  | 	var shift_amount: float = 0 | ||
|  | 	for y in node_contour.keys(): | ||
|  | 		if node_contour[y] + shift_amount < 0: | ||
|  | 			shift_amount = (node_contour[y] * -1) | ||
|  | 
 | ||
|  | 	if shift_amount > 0: | ||
|  | 		node.x += shift_amount | ||
|  | 		node.mod += shift_amount | ||
|  | 
 | ||
|  | 
 | ||
|  | func _check_for_conflicts(node: TreeNode) -> void: | ||
|  | 	var min_distance := SIBLING_DISTANCE | ||
|  | 	var shift_value: float = 0 | ||
|  | 	var shift_sibling: TreeNode = null | ||
|  | 
 | ||
|  | 	var node_contour: Dictionary = {}# { int, float } | ||
|  | 	_get_left_contour(node, 0, node_contour) | ||
|  | 
 | ||
|  | 	var sibling := node.get_most_left_sibling() | ||
|  | 	while sibling != null and sibling != node: | ||
|  | 		var sibling_contour: Dictionary = {} | ||
|  | 		_get_right_contour(sibling, 0, sibling_contour) | ||
|  | 
 | ||
|  | 		for level in range(node.y + 1, min(sibling_contour.keys().max(), node_contour.keys().max()) + 1): | ||
|  | 			var distance: float = node_contour[level] - sibling_contour[level] | ||
|  | 			if distance + shift_value < min_distance: | ||
|  | 				shift_value = min_distance - distance | ||
|  | 				shift_sibling = sibling | ||
|  | 
 | ||
|  | 		sibling = sibling.get_next_sibling() | ||
|  | 
 | ||
|  | 	if shift_value > 0: | ||
|  | 		node.x += shift_value | ||
|  | 		node.mod += shift_value | ||
|  | 		_center_nodes_between(shift_sibling, node) | ||
|  | 
 | ||
|  | 
 | ||
|  | func _center_nodes_between(left_node: TreeNode, right_node: TreeNode) -> void: | ||
|  | 	var left_index := left_node.parent.children.find(left_node) | ||
|  | 	var right_index := left_node.parent.children.find(right_node) | ||
|  | 
 | ||
|  | 	var num_nodes_between: int = (right_index - left_index) - 1 | ||
|  | 	if num_nodes_between > 0: | ||
|  | 		# The extra distance that needs to be split into num_nodes_between + 1 | ||
|  | 		# in order to find the new node spacing so that nodes are equally spaced | ||
|  | 		var distance_to_allocate: float = right_node.x - left_node.x - left_node.item.layout_size | ||
|  | 		# Subtract sizes on nodes in between | ||
|  | 		for i in range(left_index + 1, right_index): | ||
|  | 			distance_to_allocate -= left_node.parent.children[i].item.layout_size | ||
|  | 		# Divide space equally | ||
|  | 		var distance_between_nodes: float = distance_to_allocate / (num_nodes_between + 1) | ||
|  | 
 | ||
|  | 		var prev_node := left_node | ||
|  | 		var middle_node := left_node.get_next_sibling() | ||
|  | 		while middle_node != right_node: | ||
|  | 			var desire_x: float = prev_node.x + prev_node.item.layout_size + distance_between_nodes | ||
|  | 			var offset := desire_x - middle_node.x | ||
|  | 			middle_node.x += offset | ||
|  | 			middle_node.mod += offset | ||
|  | 			prev_node = middle_node | ||
|  | 			middle_node = middle_node.get_next_sibling() | ||
|  | 
 | ||
|  | 
 | ||
|  | func _get_left_contour(node: TreeNode, mod_sum: float, values: Dictionary) -> void: | ||
|  | 	var node_left: float = node.x + mod_sum | ||
|  | 	var depth := int(node.y) | ||
|  | 	if not values.has(depth): | ||
|  | 		values[depth] = node_left | ||
|  | 	else: | ||
|  | 		values[depth] = min(values[depth], node_left) | ||
|  | 
 | ||
|  | 	mod_sum += node.mod | ||
|  | 	for child in node.children: | ||
|  | 		_get_left_contour(child, mod_sum, values) | ||
|  | 
 | ||
|  | 
 | ||
|  | func _get_right_contour(node: TreeNode, mod_sum: float, values: Dictionary) -> void: | ||
|  | 	var node_right: float = node.x + mod_sum + node.item.layout_size | ||
|  | 	var depth := int(node.y) | ||
|  | 	if not values.has(depth): | ||
|  | 		values[depth] = node_right | ||
|  | 	else: | ||
|  | 		values[depth] = max(values[depth], node_right) | ||
|  | 
 | ||
|  | 	mod_sum += node.mod | ||
|  | 	for child in node.children: | ||
|  | 		_get_right_contour(child, mod_sum, values) | ||
|  | 
 | ||
|  | 
 | ||
|  | func _swap_x_y(node: TreeNode) -> void: | ||
|  | 	for child in node.children: | ||
|  | 		_swap_x_y(child) | ||
|  | 
 | ||
|  | 	var temp := node.x | ||
|  | 	node.x = node.y | ||
|  | 	node.y = temp | ||
|  | 
 | ||
|  | 
 | ||
|  | func _calculate_x(node: TreeNode, offset: int) -> void: | ||
|  | 	node.x = offset | ||
|  | 	var sibling := node.get_most_left_sibling() | ||
|  | 	var max_size: int = node.item.size.x | ||
|  | 	while sibling != null: | ||
|  | 		max_size = max(sibling.item.size.x, max_size) | ||
|  | 		sibling = sibling.get_next_sibling() | ||
|  | 
 | ||
|  | 	for child in node.children: | ||
|  | 		_calculate_x(child, max_size + offset + LEVEL_DISTANCE * BeehaveUtils.get_editor_scale()) | ||
|  | 
 | ||
|  | 
 | ||
|  | func _calculate_y(node: TreeNode, offset: int) -> void: | ||
|  | 	node.y = offset | ||
|  | 	var sibling := node.get_most_left_sibling() | ||
|  | 	var max_size: int = node.item.size.y | ||
|  | 	while sibling != null: | ||
|  | 		max_size = max(sibling.item.size.y, max_size) | ||
|  | 		sibling = sibling.get_next_sibling() | ||
|  | 
 | ||
|  | 	for child in node.children: | ||
|  | 		_calculate_y(child, max_size + offset + LEVEL_DISTANCE * BeehaveUtils.get_editor_scale()) |