You cannot select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
	
	
		
			1881 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C#
		
	
			
		
		
	
	
			1881 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C#
		
	
| // Deflate.cs
 | |
| // ------------------------------------------------------------------
 | |
| //
 | |
| // Copyright (c) 2009 Dino Chiesa and Microsoft Corporation.
 | |
| // All rights reserved.
 | |
| //
 | |
| // This code module is part of DotNetZip, a zipfile class library.
 | |
| //
 | |
| // ------------------------------------------------------------------
 | |
| //
 | |
| // This code is licensed under the Microsoft Public License.
 | |
| // See the file License.txt for the license details.
 | |
| // More info on: http://dotnetzip.codeplex.com
 | |
| //
 | |
| // ------------------------------------------------------------------
 | |
| //
 | |
| // last saved (in emacs):
 | |
| // Time-stamp: <2011-August-03 19:52:15>
 | |
| //
 | |
| // ------------------------------------------------------------------
 | |
| //
 | |
| // This module defines logic for handling the Deflate or compression.
 | |
| //
 | |
| // This code is based on multiple sources:
 | |
| // - the original zlib v1.2.3 source, which is Copyright (C) 1995-2005 Jean-loup Gailly.
 | |
| // - the original jzlib, which is Copyright (c) 2000-2003 ymnk, JCraft,Inc.
 | |
| //
 | |
| // However, this code is significantly different from both.
 | |
| // The object model is not the same, and many of the behaviors are different.
 | |
| //
 | |
| // In keeping with the license for these other works, the copyrights for
 | |
| // jzlib and zlib are here.
 | |
| //
 | |
| // -----------------------------------------------------------------------
 | |
| // Copyright (c) 2000,2001,2002,2003 ymnk, JCraft,Inc. All rights reserved.
 | |
| //
 | |
| // Redistribution and use in source and binary forms, with or without
 | |
| // modification, are permitted provided that the following conditions are met:
 | |
| //
 | |
| // 1. Redistributions of source code must retain the above copyright notice,
 | |
| // this list of conditions and the following disclaimer.
 | |
| //
 | |
| // 2. Redistributions in binary form must reproduce the above copyright
 | |
| // notice, this list of conditions and the following disclaimer in
 | |
| // the documentation and/or other materials provided with the distribution.
 | |
| //
 | |
| // 3. The names of the authors may not be used to endorse or promote products
 | |
| // derived from this software without specific prior written permission.
 | |
| //
 | |
| // THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES,
 | |
| // INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
 | |
| // FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL JCRAFT,
 | |
| // INC. OR ANY CONTRIBUTORS TO THIS SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT,
 | |
| // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 | |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
 | |
| // OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 | |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 | |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
 | |
| // EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | |
| //
 | |
| // -----------------------------------------------------------------------
 | |
| //
 | |
| // This program is based on zlib-1.1.3; credit to authors
 | |
| // Jean-loup Gailly(jloup@gzip.org) and Mark Adler(madler@alumni.caltech.edu)
 | |
| // and contributors of zlib.
 | |
| //
 | |
| // -----------------------------------------------------------------------
 | |
| 
 | |
| 
 | |
| using System;
 | |
| 
 | |
| #pragma warning disable 0675
 | |
| 
 | |
| namespace BestHTTP.Decompression.Zlib
 | |
| {
 | |
| 
 | |
|     internal enum BlockState
 | |
|     {
 | |
|         NeedMore = 0,       // block not completed, need more input or more output
 | |
|         BlockDone,          // block flush performed
 | |
|         FinishStarted,              // finish started, need only more output at next deflate
 | |
|         FinishDone          // finish done, accept no more input or output
 | |
|     }
 | |
| 
 | |
|     internal enum DeflateFlavor
 | |
|     {
 | |
|         Store,
 | |
|         Fast,
 | |
|         Slow
 | |
|     }
 | |
| 
 | |
|     internal sealed class DeflateManager
 | |
|     {
 | |
|         private static readonly int MEM_LEVEL_MAX = 9;
 | |
|         private static readonly int MEM_LEVEL_DEFAULT = 8;
 | |
| 
 | |
|         internal delegate BlockState CompressFunc(FlushType flush);
 | |
| 
 | |
|         internal class Config
 | |
|         {
 | |
|             // Use a faster search when the previous match is longer than this
 | |
|             internal int GoodLength; // reduce lazy search above this match length
 | |
| 
 | |
|             // Attempt to find a better match only when the current match is
 | |
|             // strictly smaller than this value. This mechanism is used only for
 | |
|             // compression levels >= 4.  For levels 1,2,3: MaxLazy is actually
 | |
|             // MaxInsertLength. (See DeflateFast)
 | |
| 
 | |
|             internal int MaxLazy;    // do not perform lazy search above this match length
 | |
| 
 | |
|             internal int NiceLength; // quit search above this match length
 | |
| 
 | |
|             // To speed up deflation, hash chains are never searched beyond this
 | |
|             // length.  A higher limit improves compression ratio but degrades the speed.
 | |
| 
 | |
|             internal int MaxChainLength;
 | |
| 
 | |
|             internal DeflateFlavor Flavor;
 | |
| 
 | |
|             private Config(int goodLength, int maxLazy, int niceLength, int maxChainLength, DeflateFlavor flavor)
 | |
|             {
 | |
|                 this.GoodLength = goodLength;
 | |
|                 this.MaxLazy = maxLazy;
 | |
|                 this.NiceLength = niceLength;
 | |
|                 this.MaxChainLength = maxChainLength;
 | |
|                 this.Flavor = flavor;
 | |
|             }
 | |
| 
 | |
|             public static Config Lookup(CompressionLevel level)
 | |
|             {
 | |
|                 return Table[(int)level];
 | |
|             }
 | |
| 
 | |
| 
 | |
|             static Config()
 | |
|             {
 | |
|                 Table = new Config[] {
 | |
|                     new Config(0, 0, 0, 0, DeflateFlavor.Store),
 | |
|                     new Config(4, 4, 8, 4, DeflateFlavor.Fast),
 | |
|                     new Config(4, 5, 16, 8, DeflateFlavor.Fast),
 | |
|                     new Config(4, 6, 32, 32, DeflateFlavor.Fast),
 | |
| 
 | |
|                     new Config(4, 4, 16, 16, DeflateFlavor.Slow),
 | |
|                     new Config(8, 16, 32, 32, DeflateFlavor.Slow),
 | |
|                     new Config(8, 16, 128, 128, DeflateFlavor.Slow),
 | |
|                     new Config(8, 32, 128, 256, DeflateFlavor.Slow),
 | |
|                     new Config(32, 128, 258, 1024, DeflateFlavor.Slow),
 | |
|                     new Config(32, 258, 258, 4096, DeflateFlavor.Slow),
 | |
|                 };
 | |
|             }
 | |
| 
 | |
|             private static readonly Config[] Table;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         private CompressFunc DeflateFunction;
 | |
| 
 | |
|         private static readonly System.String[] _ErrorMessage = new System.String[]
 | |
|         {
 | |
|             "need dictionary",
 | |
|             "stream end",
 | |
|             "",
 | |
|             "file error",
 | |
|             "stream error",
 | |
|             "data error",
 | |
|             "insufficient memory",
 | |
|             "buffer error",
 | |
|             "incompatible version",
 | |
|             ""
 | |
|         };
 | |
| 
 | |
|         // preset dictionary flag in zlib header
 | |
|         private static readonly int PRESET_DICT = 0x20;
 | |
| 
 | |
|         private static readonly int INIT_STATE = 42;
 | |
|         private static readonly int BUSY_STATE = 113;
 | |
|         private static readonly int FINISH_STATE = 666;
 | |
| 
 | |
|         // The deflate compression method
 | |
|         private static readonly int Z_DEFLATED = 8;
 | |
| 
 | |
|         private static readonly int STORED_BLOCK = 0;
 | |
|         private static readonly int STATIC_TREES = 1;
 | |
|         private static readonly int DYN_TREES = 2;
 | |
| 
 | |
|         // The three kinds of block type
 | |
|         private static readonly int Z_BINARY = 0;
 | |
|         private static readonly int Z_ASCII = 1;
 | |
|         private static readonly int Z_UNKNOWN = 2;
 | |
| 
 | |
|         private static readonly int Buf_size = 8 * 2;
 | |
| 
 | |
|         private static readonly int MIN_MATCH = 3;
 | |
|         private static readonly int MAX_MATCH = 258;
 | |
| 
 | |
|         private static readonly int MIN_LOOKAHEAD = (MAX_MATCH + MIN_MATCH + 1);
 | |
| 
 | |
|         private static readonly int HEAP_SIZE = (2 * InternalConstants.L_CODES + 1);
 | |
| 
 | |
|         private static readonly int END_BLOCK = 256;
 | |
| 
 | |
|         internal ZlibCodec _codec; // the zlib encoder/decoder
 | |
|         internal int status;       // as the name implies
 | |
|         internal byte[] pending;   // output still pending - waiting to be compressed
 | |
|         internal int nextPending;  // index of next pending byte to output to the stream
 | |
|         internal int pendingCount; // number of bytes in the pending buffer
 | |
| 
 | |
|         internal sbyte data_type;  // UNKNOWN, BINARY or ASCII
 | |
|         internal int last_flush;   // value of flush param for previous deflate call
 | |
| 
 | |
|         internal int w_size;       // LZ77 window size (32K by default)
 | |
|         internal int w_bits;       // log2(w_size)  (8..16)
 | |
|         internal int w_mask;       // w_size - 1
 | |
| 
 | |
|         //internal byte[] dictionary;
 | |
|         internal byte[] window;
 | |
| 
 | |
|         // Sliding window. Input bytes are read into the second half of the window,
 | |
|         // and move to the first half later to keep a dictionary of at least wSize
 | |
|         // bytes. With this organization, matches are limited to a distance of
 | |
|         // wSize-MAX_MATCH bytes, but this ensures that IO is always
 | |
|         // performed with a length multiple of the block size.
 | |
|         //
 | |
|         // To do: use the user input buffer as sliding window.
 | |
| 
 | |
|         internal int window_size;
 | |
|         // Actual size of window: 2*wSize, except when the user input buffer
 | |
|         // is directly used as sliding window.
 | |
| 
 | |
|         internal short[] prev;
 | |
|         // Link to older string with same hash index. To limit the size of this
 | |
|         // array to 64K, this link is maintained only for the last 32K strings.
 | |
|         // An index in this array is thus a window index modulo 32K.
 | |
| 
 | |
|         internal short[] head;  // Heads of the hash chains or NIL.
 | |
| 
 | |
|         internal int ins_h;     // hash index of string to be inserted
 | |
|         internal int hash_size; // number of elements in hash table
 | |
|         internal int hash_bits; // log2(hash_size)
 | |
|         internal int hash_mask; // hash_size-1
 | |
| 
 | |
|         // Number of bits by which ins_h must be shifted at each input
 | |
|         // step. It must be such that after MIN_MATCH steps, the oldest
 | |
|         // byte no longer takes part in the hash key, that is:
 | |
|         // hash_shift * MIN_MATCH >= hash_bits
 | |
|         internal int hash_shift;
 | |
| 
 | |
|         // Window position at the beginning of the current output block. Gets
 | |
|         // negative when the window is moved backwards.
 | |
| 
 | |
|         internal int block_start;
 | |
| 
 | |
|         Config config;
 | |
|         internal int match_length;    // length of best match
 | |
|         internal int prev_match;      // previous match
 | |
|         internal int match_available; // set if previous match exists
 | |
|         internal int strstart;        // start of string to insert into.....????
 | |
|         internal int match_start;     // start of matching string
 | |
|         internal int lookahead;       // number of valid bytes ahead in window
 | |
| 
 | |
|         // Length of the best match at previous step. Matches not greater than this
 | |
|         // are discarded. This is used in the lazy match evaluation.
 | |
|         internal int prev_length;
 | |
| 
 | |
|         // Insert new strings in the hash table only if the match length is not
 | |
|         // greater than this length. This saves time but degrades compression.
 | |
|         // max_insert_length is used only for compression levels <= 3.
 | |
| 
 | |
|         internal CompressionLevel compressionLevel; // compression level (1..9)
 | |
|         internal CompressionStrategy compressionStrategy; // favor or force Huffman coding
 | |
| 
 | |
| 
 | |
|         internal short[] dyn_ltree;         // literal and length tree
 | |
|         internal short[] dyn_dtree;         // distance tree
 | |
|         internal short[] bl_tree;           // Huffman tree for bit lengths
 | |
| 
 | |
|         internal ZTree treeLiterals = new ZTree();  // desc for literal tree
 | |
|         internal ZTree treeDistances = new ZTree();  // desc for distance tree
 | |
|         internal ZTree treeBitLengths = new ZTree(); // desc for bit length tree
 | |
| 
 | |
|         // number of codes at each bit length for an optimal tree
 | |
|         internal short[] bl_count = new short[InternalConstants.MAX_BITS + 1];
 | |
| 
 | |
|         // heap used to build the Huffman trees
 | |
|         internal int[] heap = new int[2 * InternalConstants.L_CODES + 1];
 | |
| 
 | |
|         internal int heap_len;              // number of elements in the heap
 | |
|         internal int heap_max;              // element of largest frequency
 | |
| 
 | |
|         // The sons of heap[n] are heap[2*n] and heap[2*n+1]. heap[0] is not used.
 | |
|         // The same heap array is used to build all trees.
 | |
| 
 | |
|         // Depth of each subtree used as tie breaker for trees of equal frequency
 | |
|         internal sbyte[] depth = new sbyte[2 * InternalConstants.L_CODES + 1];
 | |
| 
 | |
|         internal int _lengthOffset;                 // index for literals or lengths
 | |
| 
 | |
| 
 | |
|         // Size of match buffer for literals/lengths.  There are 4 reasons for
 | |
|         // limiting lit_bufsize to 64K:
 | |
|         //   - frequencies can be kept in 16 bit counters
 | |
|         //   - if compression is not successful for the first block, all input
 | |
|         //     data is still in the window so we can still emit a stored block even
 | |
|         //     when input comes from standard input.  (This can also be done for
 | |
|         //     all blocks if lit_bufsize is not greater than 32K.)
 | |
|         //   - if compression is not successful for a file smaller than 64K, we can
 | |
|         //     even emit a stored file instead of a stored block (saving 5 bytes).
 | |
|         //     This is applicable only for zip (not gzip or zlib).
 | |
|         //   - creating new Huffman trees less frequently may not provide fast
 | |
|         //     adaptation to changes in the input data statistics. (Take for
 | |
|         //     example a binary file with poorly compressible code followed by
 | |
|         //     a highly compressible string table.) Smaller buffer sizes give
 | |
|         //     fast adaptation but have of course the overhead of transmitting
 | |
|         //     trees more frequently.
 | |
| 
 | |
|         internal int lit_bufsize;
 | |
| 
 | |
|         internal int last_lit;     // running index in l_buf
 | |
| 
 | |
|         // Buffer for distances. To simplify the code, d_buf and l_buf have
 | |
|         // the same number of elements. To use different lengths, an extra flag
 | |
|         // array would be necessary.
 | |
| 
 | |
|         internal int _distanceOffset;        // index into pending; points to distance data??
 | |
| 
 | |
|         internal int opt_len;      // bit length of current block with optimal trees
 | |
|         internal int static_len;   // bit length of current block with static trees
 | |
|         internal int matches;      // number of string matches in current block
 | |
|         internal int last_eob_len; // bit length of EOB code for last block
 | |
| 
 | |
|         // Output buffer. bits are inserted starting at the bottom (least
 | |
|         // significant bits).
 | |
|         internal short bi_buf;
 | |
| 
 | |
|         // Number of valid bits in bi_buf.  All bits above the last valid bit
 | |
|         // are always zero.
 | |
|         internal int bi_valid;
 | |
| 
 | |
| 
 | |
|         internal DeflateManager()
 | |
|         {
 | |
|             dyn_ltree = new short[HEAP_SIZE * 2];
 | |
|             dyn_dtree = new short[(2 * InternalConstants.D_CODES + 1) * 2]; // distance tree
 | |
|             bl_tree = new short[(2 * InternalConstants.BL_CODES + 1) * 2]; // Huffman tree for bit lengths
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // lm_init
 | |
|         private void _InitializeLazyMatch()
 | |
|         {
 | |
|             window_size = 2 * w_size;
 | |
| 
 | |
|             // clear the hash - workitem 9063
 | |
|             Array.Clear(head, 0, hash_size);
 | |
|             //for (int i = 0; i < hash_size; i++) head[i] = 0;
 | |
| 
 | |
|             config = Config.Lookup(compressionLevel);
 | |
|             SetDeflater();
 | |
| 
 | |
|             strstart = 0;
 | |
|             block_start = 0;
 | |
|             lookahead = 0;
 | |
|             match_length = prev_length = MIN_MATCH - 1;
 | |
|             match_available = 0;
 | |
|             ins_h = 0;
 | |
|         }
 | |
| 
 | |
|         // Initialize the tree data structures for a new zlib stream.
 | |
|         private void _InitializeTreeData()
 | |
|         {
 | |
|             treeLiterals.dyn_tree = dyn_ltree;
 | |
|             treeLiterals.staticTree = StaticTree.Literals;
 | |
| 
 | |
|             treeDistances.dyn_tree = dyn_dtree;
 | |
|             treeDistances.staticTree = StaticTree.Distances;
 | |
| 
 | |
|             treeBitLengths.dyn_tree = bl_tree;
 | |
|             treeBitLengths.staticTree = StaticTree.BitLengths;
 | |
| 
 | |
|             bi_buf = 0;
 | |
|             bi_valid = 0;
 | |
|             last_eob_len = 8; // enough lookahead for inflate
 | |
| 
 | |
|             // Initialize the first block of the first file:
 | |
|             _InitializeBlocks();
 | |
|         }
 | |
| 
 | |
|         internal void _InitializeBlocks()
 | |
|         {
 | |
|             // Initialize the trees.
 | |
|             for (int i = 0; i < InternalConstants.L_CODES; i++)
 | |
|                 dyn_ltree[i * 2] = 0;
 | |
|             for (int i = 0; i < InternalConstants.D_CODES; i++)
 | |
|                 dyn_dtree[i * 2] = 0;
 | |
|             for (int i = 0; i < InternalConstants.BL_CODES; i++)
 | |
|                 bl_tree[i * 2] = 0;
 | |
| 
 | |
|             dyn_ltree[END_BLOCK * 2] = 1;
 | |
|             opt_len = static_len = 0;
 | |
|             last_lit = matches = 0;
 | |
|         }
 | |
| 
 | |
|         // Restore the heap property by moving down the tree starting at node k,
 | |
|         // exchanging a node with the smallest of its two sons if necessary, stopping
 | |
|         // when the heap property is re-established (each father smaller than its
 | |
|         // two sons).
 | |
|         internal void pqdownheap(short[] tree, int k)
 | |
|         {
 | |
|             int v = heap[k];
 | |
|             int j = k << 1; // left son of k
 | |
|             while (j <= heap_len)
 | |
|             {
 | |
|                 // Set j to the smallest of the two sons:
 | |
|                 if (j < heap_len && _IsSmaller(tree, heap[j + 1], heap[j], depth))
 | |
|                 {
 | |
|                     j++;
 | |
|                 }
 | |
|                 // Exit if v is smaller than both sons
 | |
|                 if (_IsSmaller(tree, v, heap[j], depth))
 | |
|                     break;
 | |
| 
 | |
|                 // Exchange v with the smallest son
 | |
|                 heap[k] = heap[j]; k = j;
 | |
|                 // And continue down the tree, setting j to the left son of k
 | |
|                 j <<= 1;
 | |
|             }
 | |
|             heap[k] = v;
 | |
|         }
 | |
| 
 | |
|         internal static bool _IsSmaller(short[] tree, int n, int m, sbyte[] depth)
 | |
|         {
 | |
|             short tn2 = tree[n * 2];
 | |
|             short tm2 = tree[m * 2];
 | |
|             return (tn2 < tm2 || (tn2 == tm2 && depth[n] <= depth[m]));
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // Scan a literal or distance tree to determine the frequencies of the codes
 | |
|         // in the bit length tree.
 | |
|         internal void scan_tree(short[] tree, int max_code)
 | |
|         {
 | |
|             int n; // iterates over all tree elements
 | |
|             int prevlen = -1; // last emitted length
 | |
|             int curlen; // length of current code
 | |
|             int nextlen = (int)tree[0 * 2 + 1]; // length of next code
 | |
|             int count = 0; // repeat count of the current code
 | |
|             int max_count = 7; // max repeat count
 | |
|             int min_count = 4; // min repeat count
 | |
| 
 | |
|             if (nextlen == 0)
 | |
|             {
 | |
|                 max_count = 138; min_count = 3;
 | |
|             }
 | |
|             tree[(max_code + 1) * 2 + 1] = (short)0x7fff; // guard //??
 | |
| 
 | |
|             for (n = 0; n <= max_code; n++)
 | |
|             {
 | |
|                 curlen = nextlen; nextlen = (int)tree[(n + 1) * 2 + 1];
 | |
|                 if (++count < max_count && curlen == nextlen)
 | |
|                 {
 | |
|                     continue;
 | |
|                 }
 | |
|                 else if (count < min_count)
 | |
|                 {
 | |
|                     bl_tree[curlen * 2] = (short)(bl_tree[curlen * 2] + count);
 | |
|                 }
 | |
|                 else if (curlen != 0)
 | |
|                 {
 | |
|                     if (curlen != prevlen)
 | |
|                         bl_tree[curlen * 2]++;
 | |
|                     bl_tree[InternalConstants.REP_3_6 * 2]++;
 | |
|                 }
 | |
|                 else if (count <= 10)
 | |
|                 {
 | |
|                     bl_tree[InternalConstants.REPZ_3_10 * 2]++;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     bl_tree[InternalConstants.REPZ_11_138 * 2]++;
 | |
|                 }
 | |
|                 count = 0; prevlen = curlen;
 | |
|                 if (nextlen == 0)
 | |
|                 {
 | |
|                     max_count = 138; min_count = 3;
 | |
|                 }
 | |
|                 else if (curlen == nextlen)
 | |
|                 {
 | |
|                     max_count = 6; min_count = 3;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     max_count = 7; min_count = 4;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Construct the Huffman tree for the bit lengths and return the index in
 | |
|         // bl_order of the last bit length code to send.
 | |
|         internal int build_bl_tree()
 | |
|         {
 | |
|             int max_blindex; // index of last bit length code of non zero freq
 | |
| 
 | |
|             // Determine the bit length frequencies for literal and distance trees
 | |
|             scan_tree(dyn_ltree, treeLiterals.max_code);
 | |
|             scan_tree(dyn_dtree, treeDistances.max_code);
 | |
| 
 | |
|             // Build the bit length tree:
 | |
|             treeBitLengths.build_tree(this);
 | |
|             // opt_len now includes the length of the tree representations, except
 | |
|             // the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
 | |
| 
 | |
|             // Determine the number of bit length codes to send. The pkzip format
 | |
|             // requires that at least 4 bit length codes be sent. (appnote.txt says
 | |
|             // 3 but the actual value used is 4.)
 | |
|             for (max_blindex = InternalConstants.BL_CODES - 1; max_blindex >= 3; max_blindex--)
 | |
|             {
 | |
|                 if (bl_tree[ZTree.bl_order[max_blindex] * 2 + 1] != 0)
 | |
|                     break;
 | |
|             }
 | |
|             // Update opt_len to include the bit length tree and counts
 | |
|             opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
 | |
| 
 | |
|             return max_blindex;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // Send the header for a block using dynamic Huffman trees: the counts, the
 | |
|         // lengths of the bit length codes, the literal tree and the distance tree.
 | |
|         // IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
 | |
|         internal void send_all_trees(int lcodes, int dcodes, int blcodes)
 | |
|         {
 | |
|             int rank; // index in bl_order
 | |
| 
 | |
|             send_bits(lcodes - 257, 5); // not +255 as stated in appnote.txt
 | |
|             send_bits(dcodes - 1, 5);
 | |
|             send_bits(blcodes - 4, 4); // not -3 as stated in appnote.txt
 | |
|             for (rank = 0; rank < blcodes; rank++)
 | |
|             {
 | |
|                 send_bits(bl_tree[ZTree.bl_order[rank] * 2 + 1], 3);
 | |
|             }
 | |
|             send_tree(dyn_ltree, lcodes - 1); // literal tree
 | |
|             send_tree(dyn_dtree, dcodes - 1); // distance tree
 | |
|         }
 | |
| 
 | |
|         // Send a literal or distance tree in compressed form, using the codes in
 | |
|         // bl_tree.
 | |
|         internal void send_tree(short[] tree, int max_code)
 | |
|         {
 | |
|             int n;                           // iterates over all tree elements
 | |
|             int prevlen   = -1;              // last emitted length
 | |
|             int curlen;                      // length of current code
 | |
|             int nextlen   = tree[0 * 2 + 1]; // length of next code
 | |
|             int count     = 0;               // repeat count of the current code
 | |
|             int max_count = 7;               // max repeat count
 | |
|             int min_count = 4;               // min repeat count
 | |
| 
 | |
|             if (nextlen == 0)
 | |
|             {
 | |
|                 max_count = 138; min_count = 3;
 | |
|             }
 | |
| 
 | |
|             for (n = 0; n <= max_code; n++)
 | |
|             {
 | |
|                 curlen = nextlen; nextlen = tree[(n + 1) * 2 + 1];
 | |
|                 if (++count < max_count && curlen == nextlen)
 | |
|                 {
 | |
|                     continue;
 | |
|                 }
 | |
|                 else if (count < min_count)
 | |
|                 {
 | |
|                     do
 | |
|                     {
 | |
|                         send_code(curlen, bl_tree);
 | |
|                     }
 | |
|                     while (--count != 0);
 | |
|                 }
 | |
|                 else if (curlen != 0)
 | |
|                 {
 | |
|                     if (curlen != prevlen)
 | |
|                     {
 | |
|                         send_code(curlen, bl_tree); count--;
 | |
|                     }
 | |
|                     send_code(InternalConstants.REP_3_6, bl_tree);
 | |
|                     send_bits(count - 3, 2);
 | |
|                 }
 | |
|                 else if (count <= 10)
 | |
|                 {
 | |
|                     send_code(InternalConstants.REPZ_3_10, bl_tree);
 | |
|                     send_bits(count - 3, 3);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     send_code(InternalConstants.REPZ_11_138, bl_tree);
 | |
|                     send_bits(count - 11, 7);
 | |
|                 }
 | |
|                 count = 0; prevlen = curlen;
 | |
|                 if (nextlen == 0)
 | |
|                 {
 | |
|                     max_count = 138; min_count = 3;
 | |
|                 }
 | |
|                 else if (curlen == nextlen)
 | |
|                 {
 | |
|                     max_count = 6; min_count = 3;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     max_count = 7; min_count = 4;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Output a block of bytes on the stream.
 | |
|         // IN assertion: there is enough room in pending_buf.
 | |
|         private void put_bytes(byte[] p, int start, int len)
 | |
|         {
 | |
|             Array.Copy(p, start, pending, pendingCount, len);
 | |
|             pendingCount += len;
 | |
|         }
 | |
| 
 | |
| #if NOTNEEDED
 | |
|         private void put_byte(byte c)
 | |
|         {
 | |
|             pending[pendingCount++] = c;
 | |
|         }
 | |
|         internal void put_short(int b)
 | |
|         {
 | |
|             unchecked
 | |
|             {
 | |
|                 pending[pendingCount++] = (byte)b;
 | |
|                 pending[pendingCount++] = (byte)(b >> 8);
 | |
|             }
 | |
|         }
 | |
|         internal void putShortMSB(int b)
 | |
|         {
 | |
|             unchecked
 | |
|             {
 | |
|                 pending[pendingCount++] = (byte)(b >> 8);
 | |
|                 pending[pendingCount++] = (byte)b;
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
| 
 | |
|         internal void send_code(int c, short[] tree)
 | |
|         {
 | |
|             int c2 = c * 2;
 | |
|             send_bits((tree[c2] & 0xffff), (tree[c2 + 1] & 0xffff));
 | |
|         }
 | |
| 
 | |
|         internal void send_bits(int value, int length)
 | |
|         {
 | |
|             int len = length;
 | |
|             unchecked
 | |
|             {
 | |
|                 if (bi_valid > (int)Buf_size - len)
 | |
|                 {
 | |
|                     //int val = value;
 | |
|                     //      bi_buf |= (val << bi_valid);
 | |
| 
 | |
|                     bi_buf |= (short)((value << bi_valid) & 0xffff);
 | |
|                     //put_short(bi_buf);
 | |
|                         pending[pendingCount++] = (byte)bi_buf;
 | |
|                         pending[pendingCount++] = (byte)(bi_buf >> 8);
 | |
| 
 | |
| 
 | |
|                     bi_buf = (short)((uint)value >> (Buf_size - bi_valid));
 | |
|                     bi_valid += len - Buf_size;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     //      bi_buf |= (value) << bi_valid;
 | |
|                     bi_buf |= (short)((value << bi_valid) & 0xffff);
 | |
|                     bi_valid += len;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Send one empty static block to give enough lookahead for inflate.
 | |
|         // This takes 10 bits, of which 7 may remain in the bit buffer.
 | |
|         // The current inflate code requires 9 bits of lookahead. If the
 | |
|         // last two codes for the previous block (real code plus EOB) were coded
 | |
|         // on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
 | |
|         // the last real code. In this case we send two empty static blocks instead
 | |
|         // of one. (There are no problems if the previous block is stored or fixed.)
 | |
|         // To simplify the code, we assume the worst case of last real code encoded
 | |
|         // on one bit only.
 | |
|         internal void _tr_align()
 | |
|         {
 | |
|             send_bits(STATIC_TREES << 1, 3);
 | |
|             send_code(END_BLOCK, StaticTree.lengthAndLiteralsTreeCodes);
 | |
| 
 | |
|             bi_flush();
 | |
| 
 | |
|             // Of the 10 bits for the empty block, we have already sent
 | |
|             // (10 - bi_valid) bits. The lookahead for the last real code (before
 | |
|             // the EOB of the previous block) was thus at least one plus the length
 | |
|             // of the EOB plus what we have just sent of the empty static block.
 | |
|             if (1 + last_eob_len + 10 - bi_valid < 9)
 | |
|             {
 | |
|                 send_bits(STATIC_TREES << 1, 3);
 | |
|                 send_code(END_BLOCK, StaticTree.lengthAndLiteralsTreeCodes);
 | |
|                 bi_flush();
 | |
|             }
 | |
|             last_eob_len = 7;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // Save the match info and tally the frequency counts. Return true if
 | |
|         // the current block must be flushed.
 | |
|         internal bool _tr_tally(int dist, int lc)
 | |
|         {
 | |
|             pending[_distanceOffset + last_lit * 2] = unchecked((byte) ( (uint)dist >> 8 ) );
 | |
|             pending[_distanceOffset + last_lit * 2 + 1] = unchecked((byte)dist);
 | |
|             pending[_lengthOffset + last_lit] = unchecked((byte)lc);
 | |
|             last_lit++;
 | |
| 
 | |
|             if (dist == 0)
 | |
|             {
 | |
|                 // lc is the unmatched char
 | |
|                 dyn_ltree[lc * 2]++;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 matches++;
 | |
|                 // Here, lc is the match length - MIN_MATCH
 | |
|                 dist--; // dist = match distance - 1
 | |
|                 dyn_ltree[(ZTree.LengthCode[lc] + InternalConstants.LITERALS + 1) * 2]++;
 | |
|                 dyn_dtree[ZTree.DistanceCode(dist) * 2]++;
 | |
|             }
 | |
| 
 | |
|             if ((last_lit & 0x1fff) == 0 && (int)compressionLevel > 2)
 | |
|             {
 | |
|                 // Compute an upper bound for the compressed length
 | |
|                 int out_length = last_lit << 3;
 | |
|                 int in_length = strstart - block_start;
 | |
|                 int dcode;
 | |
|                 for (dcode = 0; dcode < InternalConstants.D_CODES; dcode++)
 | |
|                 {
 | |
|                     out_length = (int)(out_length + (int)dyn_dtree[dcode * 2] * (5L + ZTree.ExtraDistanceBits[dcode]));
 | |
|                 }
 | |
|                 out_length >>= 3;
 | |
|                 if ((matches < (last_lit / 2)) && out_length < in_length / 2)
 | |
|                     return true;
 | |
|             }
 | |
| 
 | |
|             return (last_lit == lit_bufsize - 1) || (last_lit == lit_bufsize);
 | |
|             // dinoch - wraparound?
 | |
|             // We avoid equality with lit_bufsize because of wraparound at 64K
 | |
|             // on 16 bit machines and because stored blocks are restricted to
 | |
|             // 64K-1 bytes.
 | |
|         }
 | |
| 
 | |
| 
 | |
| 
 | |
|         // Send the block data compressed using the given Huffman trees
 | |
|         internal void send_compressed_block(short[] ltree, short[] dtree)
 | |
|         {
 | |
|             int distance; // distance of matched string
 | |
|             int lc;       // match length or unmatched char (if dist == 0)
 | |
|             int lx = 0;   // running index in l_buf
 | |
|             int code;     // the code to send
 | |
|             int extra;    // number of extra bits to send
 | |
| 
 | |
|             if (last_lit != 0)
 | |
|             {
 | |
|                 do
 | |
|                 {
 | |
|                     int ix = _distanceOffset + lx * 2;
 | |
|                     distance = ((pending[ix] << 8) & 0xff00) |
 | |
|                         (pending[ix + 1] & 0xff);
 | |
|                     lc = (pending[_lengthOffset + lx]) & 0xff;
 | |
|                     lx++;
 | |
| 
 | |
|                     if (distance == 0)
 | |
|                     {
 | |
|                         send_code(lc, ltree); // send a literal byte
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // literal or match pair
 | |
|                         // Here, lc is the match length - MIN_MATCH
 | |
|                         code = ZTree.LengthCode[lc];
 | |
| 
 | |
|                         // send the length code
 | |
|                         send_code(code + InternalConstants.LITERALS + 1, ltree);
 | |
|                         extra = ZTree.ExtraLengthBits[code];
 | |
|                         if (extra != 0)
 | |
|                         {
 | |
|                             // send the extra length bits
 | |
|                             lc -= ZTree.LengthBase[code];
 | |
|                             send_bits(lc, extra);
 | |
|                         }
 | |
|                         distance--; // dist is now the match distance - 1
 | |
|                         code = ZTree.DistanceCode(distance);
 | |
| 
 | |
|                         // send the distance code
 | |
|                         send_code(code, dtree);
 | |
| 
 | |
|                         extra = ZTree.ExtraDistanceBits[code];
 | |
|                         if (extra != 0)
 | |
|                         {
 | |
|                             // send the extra distance bits
 | |
|                             distance -= ZTree.DistanceBase[code];
 | |
|                             send_bits(distance, extra);
 | |
|                         }
 | |
|                     }
 | |
| 
 | |
|                     // Check that the overlay between pending and d_buf+l_buf is ok:
 | |
|                 }
 | |
|                 while (lx < last_lit);
 | |
|             }
 | |
| 
 | |
|             send_code(END_BLOCK, ltree);
 | |
|             last_eob_len = ltree[END_BLOCK * 2 + 1];
 | |
|         }
 | |
| 
 | |
| 
 | |
| 
 | |
|         // Set the data type to ASCII or BINARY, using a crude approximation:
 | |
|         // binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
 | |
|         // IN assertion: the fields freq of dyn_ltree are set and the total of all
 | |
|         // frequencies does not exceed 64K (to fit in an int on 16 bit machines).
 | |
|         internal void set_data_type()
 | |
|         {
 | |
|             int n = 0;
 | |
|             int ascii_freq = 0;
 | |
|             int bin_freq = 0;
 | |
|             while (n < 7)
 | |
|             {
 | |
|                 bin_freq += dyn_ltree[n * 2]; n++;
 | |
|             }
 | |
|             while (n < 128)
 | |
|             {
 | |
|                 ascii_freq += dyn_ltree[n * 2]; n++;
 | |
|             }
 | |
|             while (n < InternalConstants.LITERALS)
 | |
|             {
 | |
|                 bin_freq += dyn_ltree[n * 2]; n++;
 | |
|             }
 | |
|             data_type = (sbyte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
 | |
|         }
 | |
| 
 | |
| 
 | |
| 
 | |
|         // Flush the bit buffer, keeping at most 7 bits in it.
 | |
|         internal void bi_flush()
 | |
|         {
 | |
|             if (bi_valid == 16)
 | |
|             {
 | |
|                 pending[pendingCount++] = (byte)bi_buf;
 | |
|                 pending[pendingCount++] = (byte)(bi_buf >> 8);
 | |
|                 bi_buf = 0;
 | |
|                 bi_valid = 0;
 | |
|             }
 | |
|             else if (bi_valid >= 8)
 | |
|             {
 | |
|                 //put_byte((byte)bi_buf);
 | |
|                 pending[pendingCount++] = (byte)bi_buf;
 | |
|                 bi_buf >>= 8;
 | |
|                 bi_valid -= 8;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Flush the bit buffer and align the output on a byte boundary
 | |
|         internal void bi_windup()
 | |
|         {
 | |
|             if (bi_valid > 8)
 | |
|             {
 | |
|                 pending[pendingCount++] = (byte)bi_buf;
 | |
|                 pending[pendingCount++] = (byte)(bi_buf >> 8);
 | |
|             }
 | |
|             else if (bi_valid > 0)
 | |
|             {
 | |
|                 //put_byte((byte)bi_buf);
 | |
|                 pending[pendingCount++] = (byte)bi_buf;
 | |
|             }
 | |
|             bi_buf = 0;
 | |
|             bi_valid = 0;
 | |
|         }
 | |
| 
 | |
|         // Copy a stored block, storing first the length and its
 | |
|         // one's complement if requested.
 | |
|         internal void copy_block(int buf, int len, bool header)
 | |
|         {
 | |
|             bi_windup(); // align on byte boundary
 | |
|             last_eob_len = 8; // enough lookahead for inflate
 | |
| 
 | |
|             if (header)
 | |
|                 unchecked
 | |
|                 {
 | |
|                     //put_short((short)len);
 | |
|                     pending[pendingCount++] = (byte)len;
 | |
|                     pending[pendingCount++] = (byte)(len >> 8);
 | |
|                     //put_short((short)~len);
 | |
|                     pending[pendingCount++] = (byte)~len;
 | |
|                     pending[pendingCount++] = (byte)(~len >> 8);
 | |
|                 }
 | |
| 
 | |
|             put_bytes(window, buf, len);
 | |
|         }
 | |
| 
 | |
|         internal void flush_block_only(bool eof)
 | |
|         {
 | |
|             _tr_flush_block(block_start >= 0 ? block_start : -1, strstart - block_start, eof);
 | |
|             block_start = strstart;
 | |
|             _codec.flush_pending();
 | |
|         }
 | |
| 
 | |
|         // Copy without compression as much as possible from the input stream, return
 | |
|         // the current block state.
 | |
|         // This function does not insert new strings in the dictionary since
 | |
|         // uncompressible data is probably not useful. This function is used
 | |
|         // only for the level=0 compression option.
 | |
|         // NOTE: this function should be optimized to avoid extra copying from
 | |
|         // window to pending_buf.
 | |
|         internal BlockState DeflateNone(FlushType flush)
 | |
|         {
 | |
|             // Stored blocks are limited to 0xffff bytes, pending is limited
 | |
|             // to pending_buf_size, and each stored block has a 5 byte header:
 | |
| 
 | |
|             int max_block_size = 0xffff;
 | |
|             int max_start;
 | |
| 
 | |
|             if (max_block_size > pending.Length - 5)
 | |
|             {
 | |
|                 max_block_size = pending.Length - 5;
 | |
|             }
 | |
| 
 | |
|             // Copy as much as possible from input to output:
 | |
|             while (true)
 | |
|             {
 | |
|                 // Fill the window as much as possible:
 | |
|                 if (lookahead <= 1)
 | |
|                 {
 | |
|                     _fillWindow();
 | |
|                     if (lookahead == 0 && flush == FlushType.None)
 | |
|                         return BlockState.NeedMore;
 | |
|                     if (lookahead == 0)
 | |
|                         break; // flush the current block
 | |
|                 }
 | |
| 
 | |
|                 strstart += lookahead;
 | |
|                 lookahead = 0;
 | |
| 
 | |
|                 // Emit a stored block if pending will be full:
 | |
|                 max_start = block_start + max_block_size;
 | |
|                 if (strstart == 0 || strstart >= max_start)
 | |
|                 {
 | |
|                     // strstart == 0 is possible when wraparound on 16-bit machine
 | |
|                     lookahead = (int)(strstart - max_start);
 | |
|                     strstart = (int)max_start;
 | |
| 
 | |
|                     flush_block_only(false);
 | |
|                     if (_codec.AvailableBytesOut == 0)
 | |
|                         return BlockState.NeedMore;
 | |
|                 }
 | |
| 
 | |
|                 // Flush if we may have to slide, otherwise block_start may become
 | |
|                 // negative and the data will be gone:
 | |
|                 if (strstart - block_start >= w_size - MIN_LOOKAHEAD)
 | |
|                 {
 | |
|                     flush_block_only(false);
 | |
|                     if (_codec.AvailableBytesOut == 0)
 | |
|                         return BlockState.NeedMore;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             flush_block_only(flush == FlushType.Finish);
 | |
|             if (_codec.AvailableBytesOut == 0)
 | |
|                 return (flush == FlushType.Finish) ? BlockState.FinishStarted : BlockState.NeedMore;
 | |
| 
 | |
|             return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // Send a stored block
 | |
|         internal void _tr_stored_block(int buf, int stored_len, bool eof)
 | |
|         {
 | |
|             send_bits((STORED_BLOCK << 1) + (eof ? 1 : 0), 3); // send block type
 | |
|             copy_block(buf, stored_len, true); // with header
 | |
|         }
 | |
| 
 | |
|         // Determine the best encoding for the current block: dynamic trees, static
 | |
|         // trees or store, and output the encoded block to the zip file.
 | |
|         internal void _tr_flush_block(int buf, int stored_len, bool eof)
 | |
|         {
 | |
|             int opt_lenb, static_lenb; // opt_len and static_len in bytes
 | |
|             int max_blindex = 0; // index of last bit length code of non zero freq
 | |
| 
 | |
|             // Build the Huffman trees unless a stored block is forced
 | |
|             if (compressionLevel > 0)
 | |
|             {
 | |
|                 // Check if the file is ascii or binary
 | |
|                 if (data_type == Z_UNKNOWN)
 | |
|                     set_data_type();
 | |
| 
 | |
|                 // Construct the literal and distance trees
 | |
|                 treeLiterals.build_tree(this);
 | |
| 
 | |
|                 treeDistances.build_tree(this);
 | |
| 
 | |
|                 // At this point, opt_len and static_len are the total bit lengths of
 | |
|                 // the compressed block data, excluding the tree representations.
 | |
| 
 | |
|                 // Build the bit length tree for the above two trees, and get the index
 | |
|                 // in bl_order of the last bit length code to send.
 | |
|                 max_blindex = build_bl_tree();
 | |
| 
 | |
|                 // Determine the best encoding. Compute first the block length in bytes
 | |
|                 opt_lenb = (opt_len + 3 + 7) >> 3;
 | |
|                 static_lenb = (static_len + 3 + 7) >> 3;
 | |
| 
 | |
|                 if (static_lenb <= opt_lenb)
 | |
|                     opt_lenb = static_lenb;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 opt_lenb = static_lenb = stored_len + 5; // force a stored block
 | |
|             }
 | |
| 
 | |
|             if (stored_len + 4 <= opt_lenb && buf != -1)
 | |
|             {
 | |
|                 // 4: two words for the lengths
 | |
|                 // The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
 | |
|                 // Otherwise we can't have processed more than WSIZE input bytes since
 | |
|                 // the last block flush, because compression would have been
 | |
|                 // successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
 | |
|                 // transform a block into a stored block.
 | |
|                 _tr_stored_block(buf, stored_len, eof);
 | |
|             }
 | |
|             else if (static_lenb == opt_lenb)
 | |
|             {
 | |
|                 send_bits((STATIC_TREES << 1) + (eof ? 1 : 0), 3);
 | |
|                 send_compressed_block(StaticTree.lengthAndLiteralsTreeCodes, StaticTree.distTreeCodes);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 send_bits((DYN_TREES << 1) + (eof ? 1 : 0), 3);
 | |
|                 send_all_trees(treeLiterals.max_code + 1, treeDistances.max_code + 1, max_blindex + 1);
 | |
|                 send_compressed_block(dyn_ltree, dyn_dtree);
 | |
|             }
 | |
| 
 | |
|             // The above check is made mod 2^32, for files larger than 512 MB
 | |
|             // and uLong implemented on 32 bits.
 | |
| 
 | |
|             _InitializeBlocks();
 | |
| 
 | |
|             if (eof)
 | |
|             {
 | |
|                 bi_windup();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Fill the window when the lookahead becomes insufficient.
 | |
|         // Updates strstart and lookahead.
 | |
|         //
 | |
|         // IN assertion: lookahead < MIN_LOOKAHEAD
 | |
|         // OUT assertions: strstart <= window_size-MIN_LOOKAHEAD
 | |
|         //    At least one byte has been read, or avail_in == 0; reads are
 | |
|         //    performed for at least two bytes (required for the zip translate_eol
 | |
|         //    option -- not supported here).
 | |
|         private void _fillWindow()
 | |
|         {
 | |
|             int n, m;
 | |
|             int p;
 | |
|             int more; // Amount of free space at the end of the window.
 | |
| 
 | |
|             do
 | |
|             {
 | |
|                 more = (window_size - lookahead - strstart);
 | |
| 
 | |
|                 // Deal with !@#$% 64K limit:
 | |
|                 if (more == 0 && strstart == 0 && lookahead == 0)
 | |
|                 {
 | |
|                     more = w_size;
 | |
|                 }
 | |
|                 else if (more == -1)
 | |
|                 {
 | |
|                     // Very unlikely, but possible on 16 bit machine if strstart == 0
 | |
|                     // and lookahead == 1 (input done one byte at time)
 | |
|                     more--;
 | |
| 
 | |
|                     // If the window is almost full and there is insufficient lookahead,
 | |
|                     // move the upper half to the lower one to make room in the upper half.
 | |
|                 }
 | |
|                 else if (strstart >= w_size + w_size - MIN_LOOKAHEAD)
 | |
|                 {
 | |
|                     Array.Copy(window, w_size, window, 0, w_size);
 | |
|                     match_start -= w_size;
 | |
|                     strstart -= w_size; // we now have strstart >= MAX_DIST
 | |
|                     block_start -= w_size;
 | |
| 
 | |
|                     // Slide the hash table (could be avoided with 32 bit values
 | |
|                     // at the expense of memory usage). We slide even when level == 0
 | |
|                     // to keep the hash table consistent if we switch back to level > 0
 | |
|                     // later. (Using level 0 permanently is not an optimal usage of
 | |
|                     // zlib, so we don't care about this pathological case.)
 | |
| 
 | |
|                     n = hash_size;
 | |
|                     p = n;
 | |
|                     do
 | |
|                     {
 | |
|                         m = (head[--p] & 0xffff);
 | |
|                         head[p] = (short)((m >= w_size) ? (m - w_size) : 0);
 | |
|                     }
 | |
|                     while (--n != 0);
 | |
| 
 | |
|                     n = w_size;
 | |
|                     p = n;
 | |
|                     do
 | |
|                     {
 | |
|                         m = (prev[--p] & 0xffff);
 | |
|                         prev[p] = (short)((m >= w_size) ? (m - w_size) : 0);
 | |
|                         // If n is not on any hash chain, prev[n] is garbage but
 | |
|                         // its value will never be used.
 | |
|                     }
 | |
|                     while (--n != 0);
 | |
|                     more += w_size;
 | |
|                 }
 | |
| 
 | |
|                 if (_codec.AvailableBytesIn == 0)
 | |
|                     return;
 | |
| 
 | |
|                 // If there was no sliding:
 | |
|                 //    strstart <= WSIZE+MAX_DIST-1 && lookahead <= MIN_LOOKAHEAD - 1 &&
 | |
|                 //    more == window_size - lookahead - strstart
 | |
|                 // => more >= window_size - (MIN_LOOKAHEAD-1 + WSIZE + MAX_DIST-1)
 | |
|                 // => more >= window_size - 2*WSIZE + 2
 | |
|                 // In the BIG_MEM or MMAP case (not yet supported),
 | |
|                 //   window_size == input_size + MIN_LOOKAHEAD  &&
 | |
|                 //   strstart + s->lookahead <= input_size => more >= MIN_LOOKAHEAD.
 | |
|                 // Otherwise, window_size == 2*WSIZE so more >= 2.
 | |
|                 // If there was sliding, more >= WSIZE. So in all cases, more >= 2.
 | |
| 
 | |
|                 n = _codec.read_buf(window, strstart + lookahead, more);
 | |
|                 lookahead += n;
 | |
| 
 | |
|                 // Initialize the hash value now that we have some input:
 | |
|                 if (lookahead >= MIN_MATCH)
 | |
|                 {
 | |
|                     ins_h = window[strstart] & 0xff;
 | |
|                     ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask;
 | |
|                 }
 | |
|                 // If the whole input has less than MIN_MATCH bytes, ins_h is garbage,
 | |
|                 // but this is not important since only literal bytes will be emitted.
 | |
|             }
 | |
|             while (lookahead < MIN_LOOKAHEAD && _codec.AvailableBytesIn != 0);
 | |
|         }
 | |
| 
 | |
|         // Compress as much as possible from the input stream, return the current
 | |
|         // block state.
 | |
|         // This function does not perform lazy evaluation of matches and inserts
 | |
|         // new strings in the dictionary only for unmatched strings or for short
 | |
|         // matches. It is used only for the fast compression options.
 | |
|         internal BlockState DeflateFast(FlushType flush)
 | |
|         {
 | |
|             //    short hash_head = 0; // head of the hash chain
 | |
|             int hash_head = 0; // head of the hash chain
 | |
|             bool bflush; // set if current block must be flushed
 | |
| 
 | |
|             while (true)
 | |
|             {
 | |
|                 // Make sure that we always have enough lookahead, except
 | |
|                 // at the end of the input file. We need MAX_MATCH bytes
 | |
|                 // for the next match, plus MIN_MATCH bytes to insert the
 | |
|                 // string following the next match.
 | |
|                 if (lookahead < MIN_LOOKAHEAD)
 | |
|                 {
 | |
|                     _fillWindow();
 | |
|                     if (lookahead < MIN_LOOKAHEAD && flush == FlushType.None)
 | |
|                     {
 | |
|                         return BlockState.NeedMore;
 | |
|                     }
 | |
|                     if (lookahead == 0)
 | |
|                         break; // flush the current block
 | |
|                 }
 | |
| 
 | |
|                 // Insert the string window[strstart .. strstart+2] in the
 | |
|                 // dictionary, and set hash_head to the head of the hash chain:
 | |
|                 if (lookahead >= MIN_MATCH)
 | |
|                 {
 | |
|                     ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
 | |
| 
 | |
|                     //  prev[strstart&w_mask]=hash_head=head[ins_h];
 | |
|                     hash_head = (head[ins_h] & 0xffff);
 | |
|                     prev[strstart & w_mask] = head[ins_h];
 | |
|                     head[ins_h] = unchecked((short)strstart);
 | |
|                 }
 | |
| 
 | |
|                 // Find the longest match, discarding those <= prev_length.
 | |
|                 // At this point we have always match_length < MIN_MATCH
 | |
| 
 | |
|                 if (hash_head != 0L && ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD)
 | |
|                 {
 | |
|                     // To simplify the code, we prevent matches with the string
 | |
|                     // of window index 0 (in particular we have to avoid a match
 | |
|                     // of the string with itself at the start of the input file).
 | |
|                     if (compressionStrategy != CompressionStrategy.HuffmanOnly)
 | |
|                     {
 | |
|                         match_length = longest_match(hash_head);
 | |
|                     }
 | |
|                     // longest_match() sets match_start
 | |
|                 }
 | |
|                 if (match_length >= MIN_MATCH)
 | |
|                 {
 | |
|                     //        check_match(strstart, match_start, match_length);
 | |
| 
 | |
|                     bflush = _tr_tally(strstart - match_start, match_length - MIN_MATCH);
 | |
| 
 | |
|                     lookahead -= match_length;
 | |
| 
 | |
|                     // Insert new strings in the hash table only if the match length
 | |
|                     // is not too large. This saves time but degrades compression.
 | |
|                     if (match_length <= config.MaxLazy && lookahead >= MIN_MATCH)
 | |
|                     {
 | |
|                         match_length--; // string at strstart already in hash table
 | |
|                         do
 | |
|                         {
 | |
|                             strstart++;
 | |
| 
 | |
|                             ins_h = ((ins_h << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
 | |
|                             //      prev[strstart&w_mask]=hash_head=head[ins_h];
 | |
|                             hash_head = (head[ins_h] & 0xffff);
 | |
|                             prev[strstart & w_mask] = head[ins_h];
 | |
|                             head[ins_h] = unchecked((short)strstart);
 | |
| 
 | |
|                             // strstart never exceeds WSIZE-MAX_MATCH, so there are
 | |
|                             // always MIN_MATCH bytes ahead.
 | |
|                         }
 | |
|                         while (--match_length != 0);
 | |
|                         strstart++;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         strstart += match_length;
 | |
|                         match_length = 0;
 | |
|                         ins_h = window[strstart] & 0xff;
 | |
| 
 | |
|                         ins_h = (((ins_h) << hash_shift) ^ (window[strstart + 1] & 0xff)) & hash_mask;
 | |
|                         // If lookahead < MIN_MATCH, ins_h is garbage, but it does not
 | |
|                         // matter since it will be recomputed at next deflate call.
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // No match, output a literal byte
 | |
| 
 | |
|                     bflush = _tr_tally(0, window[strstart] & 0xff);
 | |
|                     lookahead--;
 | |
|                     strstart++;
 | |
|                 }
 | |
|                 if (bflush)
 | |
|                 {
 | |
|                     flush_block_only(false);
 | |
|                     if (_codec.AvailableBytesOut == 0)
 | |
|                         return BlockState.NeedMore;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             flush_block_only(flush == FlushType.Finish);
 | |
|             if (_codec.AvailableBytesOut == 0)
 | |
|             {
 | |
|                 if (flush == FlushType.Finish)
 | |
|                     return BlockState.FinishStarted;
 | |
|                 else
 | |
|                     return BlockState.NeedMore;
 | |
|             }
 | |
|             return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone;
 | |
|         }
 | |
| 
 | |
|         // Same as above, but achieves better compression. We use a lazy
 | |
|         // evaluation for matches: a match is finally adopted only if there is
 | |
|         // no better match at the next window position.
 | |
|         internal BlockState DeflateSlow(FlushType flush)
 | |
|         {
 | |
|             //    short hash_head = 0;    // head of hash chain
 | |
|             int hash_head = 0; // head of hash chain
 | |
|             bool bflush; // set if current block must be flushed
 | |
| 
 | |
|             // Process the input block.
 | |
|             while (true)
 | |
|             {
 | |
|                 // Make sure that we always have enough lookahead, except
 | |
|                 // at the end of the input file. We need MAX_MATCH bytes
 | |
|                 // for the next match, plus MIN_MATCH bytes to insert the
 | |
|                 // string following the next match.
 | |
| 
 | |
|                 if (lookahead < MIN_LOOKAHEAD)
 | |
|                 {
 | |
|                     _fillWindow();
 | |
|                     if (lookahead < MIN_LOOKAHEAD && flush == FlushType.None)
 | |
|                         return BlockState.NeedMore;
 | |
| 
 | |
|                     if (lookahead == 0)
 | |
|                         break; // flush the current block
 | |
|                 }
 | |
| 
 | |
|                 // Insert the string window[strstart .. strstart+2] in the
 | |
|                 // dictionary, and set hash_head to the head of the hash chain:
 | |
| 
 | |
|                 if (lookahead >= MIN_MATCH)
 | |
|                 {
 | |
|                     ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
 | |
|                     //  prev[strstart&w_mask]=hash_head=head[ins_h];
 | |
|                     hash_head = (head[ins_h] & 0xffff);
 | |
|                     prev[strstart & w_mask] = head[ins_h];
 | |
|                     head[ins_h] = unchecked((short)strstart);
 | |
|                 }
 | |
| 
 | |
|                 // Find the longest match, discarding those <= prev_length.
 | |
|                 prev_length = match_length;
 | |
|                 prev_match = match_start;
 | |
|                 match_length = MIN_MATCH - 1;
 | |
| 
 | |
|                 if (hash_head != 0 && prev_length < config.MaxLazy &&
 | |
|                     ((strstart - hash_head) & 0xffff) <= w_size - MIN_LOOKAHEAD)
 | |
|                 {
 | |
|                     // To simplify the code, we prevent matches with the string
 | |
|                     // of window index 0 (in particular we have to avoid a match
 | |
|                     // of the string with itself at the start of the input file).
 | |
| 
 | |
|                     if (compressionStrategy != CompressionStrategy.HuffmanOnly)
 | |
|                     {
 | |
|                         match_length = longest_match(hash_head);
 | |
|                     }
 | |
|                     // longest_match() sets match_start
 | |
| 
 | |
|                     if (match_length <= 5 && (compressionStrategy == CompressionStrategy.Filtered ||
 | |
|                                               (match_length == MIN_MATCH && strstart - match_start > 4096)))
 | |
|                     {
 | |
| 
 | |
|                         // If prev_match is also MIN_MATCH, match_start is garbage
 | |
|                         // but we will ignore the current match anyway.
 | |
|                         match_length = MIN_MATCH - 1;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 // If there was a match at the previous step and the current
 | |
|                 // match is not better, output the previous match:
 | |
|                 if (prev_length >= MIN_MATCH && match_length <= prev_length)
 | |
|                 {
 | |
|                     int max_insert = strstart + lookahead - MIN_MATCH;
 | |
|                     // Do not insert strings in hash table beyond this.
 | |
| 
 | |
|                     //          check_match(strstart-1, prev_match, prev_length);
 | |
| 
 | |
|                     bflush = _tr_tally(strstart - 1 - prev_match, prev_length - MIN_MATCH);
 | |
| 
 | |
|                     // Insert in hash table all strings up to the end of the match.
 | |
|                     // strstart-1 and strstart are already inserted. If there is not
 | |
|                     // enough lookahead, the last two strings are not inserted in
 | |
|                     // the hash table.
 | |
|                     lookahead -= (prev_length - 1);
 | |
|                     prev_length -= 2;
 | |
|                     do
 | |
|                     {
 | |
|                         if (++strstart <= max_insert)
 | |
|                         {
 | |
|                             ins_h = (((ins_h) << hash_shift) ^ (window[(strstart) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
 | |
|                             //prev[strstart&w_mask]=hash_head=head[ins_h];
 | |
|                             hash_head = (head[ins_h] & 0xffff);
 | |
|                             prev[strstart & w_mask] = head[ins_h];
 | |
|                             head[ins_h] = unchecked((short)strstart);
 | |
|                         }
 | |
|                     }
 | |
|                     while (--prev_length != 0);
 | |
|                     match_available = 0;
 | |
|                     match_length = MIN_MATCH - 1;
 | |
|                     strstart++;
 | |
| 
 | |
|                     if (bflush)
 | |
|                     {
 | |
|                         flush_block_only(false);
 | |
|                         if (_codec.AvailableBytesOut == 0)
 | |
|                             return BlockState.NeedMore;
 | |
|                     }
 | |
|                 }
 | |
|                 else if (match_available != 0)
 | |
|                 {
 | |
| 
 | |
|                     // If there was no match at the previous position, output a
 | |
|                     // single literal. If there was a match but the current match
 | |
|                     // is longer, truncate the previous match to a single literal.
 | |
| 
 | |
|                     bflush = _tr_tally(0, window[strstart - 1] & 0xff);
 | |
| 
 | |
|                     if (bflush)
 | |
|                     {
 | |
|                         flush_block_only(false);
 | |
|                     }
 | |
|                     strstart++;
 | |
|                     lookahead--;
 | |
|                     if (_codec.AvailableBytesOut == 0)
 | |
|                         return BlockState.NeedMore;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // There is no previous match to compare with, wait for
 | |
|                     // the next step to decide.
 | |
| 
 | |
|                     match_available = 1;
 | |
|                     strstart++;
 | |
|                     lookahead--;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (match_available != 0)
 | |
|             {
 | |
|                 bflush = _tr_tally(0, window[strstart - 1] & 0xff);
 | |
|                 match_available = 0;
 | |
|             }
 | |
|             flush_block_only(flush == FlushType.Finish);
 | |
| 
 | |
|             if (_codec.AvailableBytesOut == 0)
 | |
|             {
 | |
|                 if (flush == FlushType.Finish)
 | |
|                     return BlockState.FinishStarted;
 | |
|                 else
 | |
|                     return BlockState.NeedMore;
 | |
|             }
 | |
| 
 | |
|             return flush == FlushType.Finish ? BlockState.FinishDone : BlockState.BlockDone;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         internal int longest_match(int cur_match)
 | |
|         {
 | |
|             int chain_length = config.MaxChainLength; // max hash chain length
 | |
|             int scan         = strstart;              // current string
 | |
|             int match;                                // matched string
 | |
|             int len;                                  // length of current match
 | |
|             int best_len     = prev_length;           // best match length so far
 | |
|             int limit        = strstart > (w_size - MIN_LOOKAHEAD) ? strstart - (w_size - MIN_LOOKAHEAD) : 0;
 | |
| 
 | |
|             int niceLength = config.NiceLength;
 | |
| 
 | |
|             // Stop when cur_match becomes <= limit. To simplify the code,
 | |
|             // we prevent matches with the string of window index 0.
 | |
| 
 | |
|             int wmask = w_mask;
 | |
| 
 | |
|             int strend = strstart + MAX_MATCH;
 | |
|             byte scan_end1 = window[scan + best_len - 1];
 | |
|             byte scan_end = window[scan + best_len];
 | |
| 
 | |
|             // The code is optimized for HASH_BITS >= 8 and MAX_MATCH-2 multiple of 16.
 | |
|             // It is easy to get rid of this optimization if necessary.
 | |
| 
 | |
|             // Do not waste too much time if we already have a good match:
 | |
|             if (prev_length >= config.GoodLength)
 | |
|             {
 | |
|                 chain_length >>= 2;
 | |
|             }
 | |
| 
 | |
|             // Do not look for matches beyond the end of the input. This is necessary
 | |
|             // to make deflate deterministic.
 | |
|             if (niceLength > lookahead)
 | |
|                 niceLength = lookahead;
 | |
| 
 | |
|             do
 | |
|             {
 | |
|                 match = cur_match;
 | |
| 
 | |
|                 // Skip to next match if the match length cannot increase
 | |
|                 // or if the match length is less than 2:
 | |
|                 if (window[match + best_len] != scan_end ||
 | |
|                     window[match + best_len - 1] != scan_end1 ||
 | |
|                     window[match] != window[scan] ||
 | |
|                     window[++match] != window[scan + 1])
 | |
|                     continue;
 | |
| 
 | |
|                 // The check at best_len-1 can be removed because it will be made
 | |
|                 // again later. (This heuristic is not always a win.)
 | |
|                 // It is not necessary to compare scan[2] and match[2] since they
 | |
|                 // are always equal when the other bytes match, given that
 | |
|                 // the hash keys are equal and that HASH_BITS >= 8.
 | |
|                 scan += 2; match++;
 | |
| 
 | |
|                 // We check for insufficient lookahead only every 8th comparison;
 | |
|                 // the 256th check will be made at strstart+258.
 | |
|                 do
 | |
|                 {
 | |
|                 }
 | |
|                 while (window[++scan] == window[++match] &&
 | |
|                        window[++scan] == window[++match] &&
 | |
|                        window[++scan] == window[++match] &&
 | |
|                        window[++scan] == window[++match] &&
 | |
|                        window[++scan] == window[++match] &&
 | |
|                        window[++scan] == window[++match] &&
 | |
|                        window[++scan] == window[++match] &&
 | |
|                        window[++scan] == window[++match] && scan < strend);
 | |
| 
 | |
|                 len = MAX_MATCH - (int)(strend - scan);
 | |
|                 scan = strend - MAX_MATCH;
 | |
| 
 | |
|                 if (len > best_len)
 | |
|                 {
 | |
|                     match_start = cur_match;
 | |
|                     best_len = len;
 | |
|                     if (len >= niceLength)
 | |
|                         break;
 | |
|                     scan_end1 = window[scan + best_len - 1];
 | |
|                     scan_end = window[scan + best_len];
 | |
|                 }
 | |
|             }
 | |
|             while ((cur_match = (prev[cur_match & wmask] & 0xffff)) > limit && --chain_length != 0);
 | |
| 
 | |
|             if (best_len <= lookahead)
 | |
|                 return best_len;
 | |
|             return lookahead;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         private bool Rfc1950BytesEmitted = false;
 | |
|         private bool _WantRfc1950HeaderBytes = true;
 | |
|         internal bool WantRfc1950HeaderBytes
 | |
|         {
 | |
|             get { return _WantRfc1950HeaderBytes; }
 | |
|             set { _WantRfc1950HeaderBytes = value; }
 | |
|         }
 | |
| 
 | |
| 
 | |
|         internal int Initialize(ZlibCodec codec, CompressionLevel level)
 | |
|         {
 | |
|             return Initialize(codec, level, ZlibConstants.WindowBitsMax);
 | |
|         }
 | |
| 
 | |
|         internal int Initialize(ZlibCodec codec, CompressionLevel level, int bits)
 | |
|         {
 | |
|             return Initialize(codec, level, bits, MEM_LEVEL_DEFAULT, CompressionStrategy.Default);
 | |
|         }
 | |
| 
 | |
|         internal int Initialize(ZlibCodec codec, CompressionLevel level, int bits, CompressionStrategy compressionStrategy)
 | |
|         {
 | |
|             return Initialize(codec, level, bits, MEM_LEVEL_DEFAULT, compressionStrategy);
 | |
|         }
 | |
| 
 | |
|         internal int Initialize(ZlibCodec codec, CompressionLevel level, int windowBits, int memLevel, CompressionStrategy strategy)
 | |
|         {
 | |
|             _codec = codec;
 | |
|             _codec.Message = null;
 | |
| 
 | |
|             // validation
 | |
|             if (windowBits < 9 || windowBits > 15)
 | |
|                 throw new ZlibException("windowBits must be in the range 9..15.");
 | |
| 
 | |
|             if (memLevel < 1 || memLevel > MEM_LEVEL_MAX)
 | |
|                 throw new ZlibException(String.Format("memLevel must be in the range 1.. {0}", MEM_LEVEL_MAX));
 | |
| 
 | |
|             _codec.dstate = this;
 | |
| 
 | |
|             w_bits = windowBits;
 | |
|             w_size = 1 << w_bits;
 | |
|             w_mask = w_size - 1;
 | |
| 
 | |
|             hash_bits = memLevel + 7;
 | |
|             hash_size = 1 << hash_bits;
 | |
|             hash_mask = hash_size - 1;
 | |
|             hash_shift = ((hash_bits + MIN_MATCH - 1) / MIN_MATCH);
 | |
| 
 | |
|             window = new byte[w_size * 2];
 | |
|             prev = new short[w_size];
 | |
|             head = new short[hash_size];
 | |
| 
 | |
|             // for memLevel==8, this will be 16384, 16k
 | |
|             lit_bufsize = 1 << (memLevel + 6);
 | |
| 
 | |
|             // Use a single array as the buffer for data pending compression,
 | |
|             // the output distance codes, and the output length codes (aka tree).
 | |
|             // orig comment: This works just fine since the average
 | |
|             // output size for (length,distance) codes is <= 24 bits.
 | |
|             pending = new byte[lit_bufsize * 4];
 | |
|             _distanceOffset = lit_bufsize;
 | |
|             _lengthOffset = (1 + 2) * lit_bufsize;
 | |
| 
 | |
|             // So, for memLevel 8, the length of the pending buffer is 65536. 64k.
 | |
|             // The first 16k are pending bytes.
 | |
|             // The middle slice, of 32k, is used for distance codes.
 | |
|             // The final 16k are length codes.
 | |
| 
 | |
|             this.compressionLevel = level;
 | |
|             this.compressionStrategy = strategy;
 | |
| 
 | |
|             Reset();
 | |
|             return ZlibConstants.Z_OK;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         internal void Reset()
 | |
|         {
 | |
|             _codec.TotalBytesIn = _codec.TotalBytesOut = 0;
 | |
|             _codec.Message = null;
 | |
|             //strm.data_type = Z_UNKNOWN;
 | |
| 
 | |
|             pendingCount = 0;
 | |
|             nextPending = 0;
 | |
| 
 | |
|             Rfc1950BytesEmitted = false;
 | |
| 
 | |
|             status = (WantRfc1950HeaderBytes) ? INIT_STATE : BUSY_STATE;
 | |
|             _codec._Adler32 = Adler.Adler32(0, null, 0, 0);
 | |
| 
 | |
|             last_flush = (int)FlushType.None;
 | |
| 
 | |
|             _InitializeTreeData();
 | |
|             _InitializeLazyMatch();
 | |
|         }
 | |
| 
 | |
| 
 | |
|         internal int End()
 | |
|         {
 | |
|             if (status != INIT_STATE && status != BUSY_STATE && status != FINISH_STATE)
 | |
|             {
 | |
|                 return ZlibConstants.Z_STREAM_ERROR;
 | |
|             }
 | |
|             // Deallocate in reverse order of allocations:
 | |
|             pending = null;
 | |
|             head = null;
 | |
|             prev = null;
 | |
|             window = null;
 | |
|             // free
 | |
|             // dstate=null;
 | |
|             return status == BUSY_STATE ? ZlibConstants.Z_DATA_ERROR : ZlibConstants.Z_OK;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         private void SetDeflater()
 | |
|         {
 | |
|             switch (config.Flavor)
 | |
|             {
 | |
|                 case DeflateFlavor.Store:
 | |
|                     DeflateFunction = DeflateNone;
 | |
|                     break;
 | |
|                 case DeflateFlavor.Fast:
 | |
|                     DeflateFunction = DeflateFast;
 | |
|                     break;
 | |
|                 case DeflateFlavor.Slow:
 | |
|                     DeflateFunction = DeflateSlow;
 | |
|                     break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
| 
 | |
|         internal int SetParams(CompressionLevel level, CompressionStrategy strategy)
 | |
|         {
 | |
|             int result = ZlibConstants.Z_OK;
 | |
| 
 | |
|             if (compressionLevel != level)
 | |
|             {
 | |
|                 Config newConfig = Config.Lookup(level);
 | |
| 
 | |
|                 // change in the deflate flavor (Fast vs slow vs none)?
 | |
|                 if (newConfig.Flavor != config.Flavor && _codec.TotalBytesIn != 0)
 | |
|                 {
 | |
|                     // Flush the last buffer:
 | |
|                     result = _codec.Deflate(FlushType.Partial);
 | |
|                 }
 | |
| 
 | |
|                 compressionLevel = level;
 | |
|                 config = newConfig;
 | |
|                 SetDeflater();
 | |
|             }
 | |
| 
 | |
|             // no need to flush with change in strategy?  Really?
 | |
|             compressionStrategy = strategy;
 | |
| 
 | |
|             return result;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         internal int SetDictionary(byte[] dictionary)
 | |
|         {
 | |
|             int length = dictionary.Length;
 | |
|             int index = 0;
 | |
| 
 | |
|             if (dictionary == null || status != INIT_STATE)
 | |
|                 throw new ZlibException("Stream error.");
 | |
| 
 | |
|             _codec._Adler32 = Adler.Adler32(_codec._Adler32, dictionary, 0, dictionary.Length);
 | |
| 
 | |
|             if (length < MIN_MATCH)
 | |
|                 return ZlibConstants.Z_OK;
 | |
|             if (length > w_size - MIN_LOOKAHEAD)
 | |
|             {
 | |
|                 length = w_size - MIN_LOOKAHEAD;
 | |
|                 index = dictionary.Length - length; // use the tail of the dictionary
 | |
|             }
 | |
|             Array.Copy(dictionary, index, window, 0, length);
 | |
|             strstart = length;
 | |
|             block_start = length;
 | |
| 
 | |
|             // Insert all strings in the hash table (except for the last two bytes).
 | |
|             // s->lookahead stays null, so s->ins_h will be recomputed at the next
 | |
|             // call of fill_window.
 | |
| 
 | |
|             ins_h = window[0] & 0xff;
 | |
|             ins_h = (((ins_h) << hash_shift) ^ (window[1] & 0xff)) & hash_mask;
 | |
| 
 | |
|             for (int n = 0; n <= length - MIN_MATCH; n++)
 | |
|             {
 | |
|                 ins_h = (((ins_h) << hash_shift) ^ (window[(n) + (MIN_MATCH - 1)] & 0xff)) & hash_mask;
 | |
|                 prev[n & w_mask] = head[ins_h];
 | |
|                 head[ins_h] = (short)n;
 | |
|             }
 | |
|             return ZlibConstants.Z_OK;
 | |
|         }
 | |
| 
 | |
| 
 | |
| 
 | |
|         internal int Deflate(FlushType flush)
 | |
|         {
 | |
|             int old_flush;
 | |
| 
 | |
|             if (_codec.OutputBuffer == null ||
 | |
|                 (_codec.InputBuffer == null && _codec.AvailableBytesIn != 0) ||
 | |
|                 (status == FINISH_STATE && flush != FlushType.Finish))
 | |
|             {
 | |
|                 _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_STREAM_ERROR)];
 | |
|                 throw new ZlibException(String.Format("Something is fishy. [{0}]", _codec.Message));
 | |
|             }
 | |
|             if (_codec.AvailableBytesOut == 0)
 | |
|             {
 | |
|                 _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)];
 | |
|                 throw new ZlibException("OutputBuffer is full (AvailableBytesOut == 0)");
 | |
|             }
 | |
| 
 | |
|             old_flush = last_flush;
 | |
|             last_flush = (int)flush;
 | |
| 
 | |
|             // Write the zlib (rfc1950) header bytes
 | |
|             if (status == INIT_STATE)
 | |
|             {
 | |
|                 int header = (Z_DEFLATED + ((w_bits - 8) << 4)) << 8;
 | |
|                 int level_flags = (((int)compressionLevel - 1) & 0xff) >> 1;
 | |
| 
 | |
|                 if (level_flags > 3)
 | |
|                     level_flags = 3;
 | |
|                 header |= (level_flags << 6);
 | |
|                 if (strstart != 0)
 | |
|                     header |= PRESET_DICT;
 | |
|                 header += 31 - (header % 31);
 | |
| 
 | |
|                 status = BUSY_STATE;
 | |
|                 //putShortMSB(header);
 | |
|                 unchecked
 | |
|                 {
 | |
|                     pending[pendingCount++] = (byte)(header >> 8);
 | |
|                     pending[pendingCount++] = (byte)header;
 | |
|                 }
 | |
|                 // Save the adler32 of the preset dictionary:
 | |
|                 if (strstart != 0)
 | |
|                 {
 | |
|                     pending[pendingCount++] = (byte)((_codec._Adler32 & 0xFF000000) >> 24);
 | |
|                     pending[pendingCount++] = (byte)((_codec._Adler32 & 0x00FF0000) >> 16);
 | |
|                     pending[pendingCount++] = (byte)((_codec._Adler32 & 0x0000FF00) >> 8);
 | |
|                     pending[pendingCount++] = (byte)(_codec._Adler32 & 0x000000FF);
 | |
|                 }
 | |
|                 _codec._Adler32 = Adler.Adler32(0, null, 0, 0);
 | |
|             }
 | |
| 
 | |
|             // Flush as much pending output as possible
 | |
|             if (pendingCount != 0)
 | |
|             {
 | |
|                 _codec.flush_pending();
 | |
|                 if (_codec.AvailableBytesOut == 0)
 | |
|                 {
 | |
|                     //System.out.println("  avail_out==0");
 | |
|                     // Since avail_out is 0, deflate will be called again with
 | |
|                     // more output space, but possibly with both pending and
 | |
|                     // avail_in equal to zero. There won't be anything to do,
 | |
|                     // but this is not an error situation so make sure we
 | |
|                     // return OK instead of BUF_ERROR at next call of deflate:
 | |
|                     last_flush = -1;
 | |
|                     return ZlibConstants.Z_OK;
 | |
|                 }
 | |
| 
 | |
|                 // Make sure there is something to do and avoid duplicate consecutive
 | |
|                 // flushes. For repeated and useless calls with Z_FINISH, we keep
 | |
|                 // returning Z_STREAM_END instead of Z_BUFF_ERROR.
 | |
|             }
 | |
|             else if (_codec.AvailableBytesIn == 0 &&
 | |
|                      (int)flush <= old_flush &&
 | |
|                      flush != FlushType.Finish)
 | |
|             {
 | |
|                 // workitem 8557
 | |
|                 //
 | |
|                 // Not sure why this needs to be an error.  pendingCount == 0, which
 | |
|                 // means there's nothing to deflate.  And the caller has not asked
 | |
|                 // for a FlushType.Finish, but...  that seems very non-fatal.  We
 | |
|                 // can just say "OK" and do nothing.
 | |
| 
 | |
|                 // _codec.Message = z_errmsg[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)];
 | |
|                 // throw new ZlibException("AvailableBytesIn == 0 && flush<=old_flush && flush != FlushType.Finish");
 | |
| 
 | |
|                 return ZlibConstants.Z_OK;
 | |
|             }
 | |
| 
 | |
|             // User must not provide more input after the first FINISH:
 | |
|             if (status == FINISH_STATE && _codec.AvailableBytesIn != 0)
 | |
|             {
 | |
|                 _codec.Message = _ErrorMessage[ZlibConstants.Z_NEED_DICT - (ZlibConstants.Z_BUF_ERROR)];
 | |
|                 throw new ZlibException("status == FINISH_STATE && _codec.AvailableBytesIn != 0");
 | |
|             }
 | |
| 
 | |
|             // Start a new block or continue the current one.
 | |
|             if (_codec.AvailableBytesIn != 0 || lookahead != 0 || (flush != FlushType.None && status != FINISH_STATE))
 | |
|             {
 | |
|                 BlockState bstate = DeflateFunction(flush);
 | |
| 
 | |
|                 if (bstate == BlockState.FinishStarted || bstate == BlockState.FinishDone)
 | |
|                 {
 | |
|                     status = FINISH_STATE;
 | |
|                 }
 | |
|                 if (bstate == BlockState.NeedMore || bstate == BlockState.FinishStarted)
 | |
|                 {
 | |
|                     if (_codec.AvailableBytesOut == 0)
 | |
|                     {
 | |
|                         last_flush = -1; // avoid BUF_ERROR next call, see above
 | |
|                     }
 | |
|                     return ZlibConstants.Z_OK;
 | |
|                     // If flush != Z_NO_FLUSH && avail_out == 0, the next call
 | |
|                     // of deflate should use the same flush parameter to make sure
 | |
|                     // that the flush is complete. So we don't have to output an
 | |
|                     // empty block here, this will be done at next call. This also
 | |
|                     // ensures that for a very small output buffer, we emit at most
 | |
|                     // one empty block.
 | |
|                 }
 | |
| 
 | |
|                 if (bstate == BlockState.BlockDone)
 | |
|                 {
 | |
|                     if (flush == FlushType.Partial)
 | |
|                     {
 | |
|                         _tr_align();
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // FlushType.Full or FlushType.Sync
 | |
|                         _tr_stored_block(0, 0, false);
 | |
|                         // For a full flush, this empty block will be recognized
 | |
|                         // as a special marker by inflate_sync().
 | |
|                         if (flush == FlushType.Full)
 | |
|                         {
 | |
|                             // clear hash (forget the history)
 | |
|                             for (int i = 0; i < hash_size; i++)
 | |
|                                 head[i] = 0;
 | |
|                         }
 | |
|                     }
 | |
|                     _codec.flush_pending();
 | |
|                     if (_codec.AvailableBytesOut == 0)
 | |
|                     {
 | |
|                         last_flush = -1; // avoid BUF_ERROR at next call, see above
 | |
|                         return ZlibConstants.Z_OK;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (flush != FlushType.Finish)
 | |
|                 return ZlibConstants.Z_OK;
 | |
| 
 | |
|             if (!WantRfc1950HeaderBytes || Rfc1950BytesEmitted)
 | |
|                 return ZlibConstants.Z_STREAM_END;
 | |
| 
 | |
|             // Write the zlib trailer (adler32)
 | |
|             pending[pendingCount++] = (byte)((_codec._Adler32 & 0xFF000000) >> 24);
 | |
|             pending[pendingCount++] = (byte)((_codec._Adler32 & 0x00FF0000) >> 16);
 | |
|             pending[pendingCount++] = (byte)((_codec._Adler32 & 0x0000FF00) >> 8);
 | |
|             pending[pendingCount++] = (byte)(_codec._Adler32 & 0x000000FF);
 | |
|             //putShortMSB((int)(SharedUtils.URShift(_codec._Adler32, 16)));
 | |
|             //putShortMSB((int)(_codec._Adler32 & 0xffff));
 | |
| 
 | |
|             _codec.flush_pending();
 | |
| 
 | |
|             // If avail_out is zero, the application will call deflate again
 | |
|             // to flush the rest.
 | |
| 
 | |
|             Rfc1950BytesEmitted = true; // write the trailer only once!
 | |
| 
 | |
|             return pendingCount != 0 ? ZlibConstants.Z_OK : ZlibConstants.Z_STREAM_END;
 | |
|         }
 | |
| 
 | |
|     }
 | |
| } |